Properties

Label 2-192-192.131-c1-0-24
Degree $2$
Conductor $192$
Sign $0.689 - 0.724i$
Analytic cond. $1.53312$
Root an. cond. $1.23819$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.484 + 1.32i)2-s + (1.73 + 0.0238i)3-s + (−1.52 + 1.28i)4-s + (2.22 − 3.33i)5-s + (0.808 + 2.31i)6-s + (0.140 + 0.338i)7-s + (−2.45 − 1.40i)8-s + (2.99 + 0.0824i)9-s + (5.51 + 1.34i)10-s + (−4.16 + 0.827i)11-s + (−2.67 + 2.19i)12-s + (−1.81 + 1.21i)13-s + (−0.381 + 0.350i)14-s + (3.93 − 5.72i)15-s + (0.679 − 3.94i)16-s + (−2.34 + 2.34i)17-s + ⋯
L(s)  = 1  + (0.342 + 0.939i)2-s + (0.999 + 0.0137i)3-s + (−0.764 + 0.644i)4-s + (0.996 − 1.49i)5-s + (0.329 + 0.943i)6-s + (0.0530 + 0.127i)7-s + (−0.867 − 0.497i)8-s + (0.999 + 0.0274i)9-s + (1.74 + 0.424i)10-s + (−1.25 + 0.249i)11-s + (−0.773 + 0.633i)12-s + (−0.502 + 0.335i)13-s + (−0.102 + 0.0936i)14-s + (1.01 − 1.47i)15-s + (0.169 − 0.985i)16-s + (−0.568 + 0.568i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.689 - 0.724i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.689 - 0.724i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $0.689 - 0.724i$
Analytic conductor: \(1.53312\)
Root analytic conductor: \(1.23819\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{192} (131, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :1/2),\ 0.689 - 0.724i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.67980 + 0.720315i\)
\(L(\frac12)\) \(\approx\) \(1.67980 + 0.720315i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.484 - 1.32i)T \)
3 \( 1 + (-1.73 - 0.0238i)T \)
good5 \( 1 + (-2.22 + 3.33i)T + (-1.91 - 4.61i)T^{2} \)
7 \( 1 + (-0.140 - 0.338i)T + (-4.94 + 4.94i)T^{2} \)
11 \( 1 + (4.16 - 0.827i)T + (10.1 - 4.20i)T^{2} \)
13 \( 1 + (1.81 - 1.21i)T + (4.97 - 12.0i)T^{2} \)
17 \( 1 + (2.34 - 2.34i)T - 17iT^{2} \)
19 \( 1 + (5.58 - 3.73i)T + (7.27 - 17.5i)T^{2} \)
23 \( 1 + (0.561 - 1.35i)T + (-16.2 - 16.2i)T^{2} \)
29 \( 1 + (0.511 - 2.57i)T + (-26.7 - 11.0i)T^{2} \)
31 \( 1 - 7.17T + 31T^{2} \)
37 \( 1 + (-2.65 + 3.96i)T + (-14.1 - 34.1i)T^{2} \)
41 \( 1 + (-5.19 - 2.15i)T + (28.9 + 28.9i)T^{2} \)
43 \( 1 + (0.439 - 0.0874i)T + (39.7 - 16.4i)T^{2} \)
47 \( 1 + (-2.23 - 2.23i)T + 47iT^{2} \)
53 \( 1 + (1.03 + 5.20i)T + (-48.9 + 20.2i)T^{2} \)
59 \( 1 + (6.44 + 4.30i)T + (22.5 + 54.5i)T^{2} \)
61 \( 1 + (-2.26 + 11.3i)T + (-56.3 - 23.3i)T^{2} \)
67 \( 1 + (-3.80 - 0.757i)T + (61.8 + 25.6i)T^{2} \)
71 \( 1 + (-3.54 + 1.46i)T + (50.2 - 50.2i)T^{2} \)
73 \( 1 + (8.70 + 3.60i)T + (51.6 + 51.6i)T^{2} \)
79 \( 1 + (-2.50 - 2.50i)T + 79iT^{2} \)
83 \( 1 + (1.65 + 2.47i)T + (-31.7 + 76.6i)T^{2} \)
89 \( 1 + (11.1 - 4.63i)T + (62.9 - 62.9i)T^{2} \)
97 \( 1 - 10.0iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.83063867094100162113746026184, −12.51869327159977588739699310665, −10.19887757661727426869586901391, −9.345796175626186133444176418786, −8.498005998433998872069486716695, −7.86153785198855842254889938196, −6.32480885820092394930267005383, −5.12313065274748319707376705801, −4.25635429342559960006271556901, −2.21466933438216299270468024900, 2.49877522311618626904913577777, 2.73943228914962099846244533380, 4.50357328707296818519171700658, 6.04642154430400808162827726089, 7.28255463612415746927107528277, 8.647483960289427484667246262036, 9.826631502382829440501215344120, 10.39235434549231049516294157434, 11.12807248059424609925385572842, 12.70549717322733672457793871584

Graph of the $Z$-function along the critical line