| L(s) = 1 | + (2.12 + 2.12i)3-s + (3.22 − 3.22i)5-s + 24.6i·7-s + 8.99i·9-s + (−23.7 + 23.7i)11-s + (−18.6 − 18.6i)13-s + 13.6·15-s − 3.55·17-s + (109. + 109. i)19-s + (−52.2 + 52.2i)21-s − 36.5i·23-s + 104. i·25-s + (−19.0 + 19.0i)27-s + (68.8 + 68.8i)29-s − 306.·31-s + ⋯ |
| L(s) = 1 | + (0.408 + 0.408i)3-s + (0.288 − 0.288i)5-s + 1.32i·7-s + 0.333i·9-s + (−0.651 + 0.651i)11-s + (−0.398 − 0.398i)13-s + 0.235·15-s − 0.0506·17-s + (1.31 + 1.31i)19-s + (−0.542 + 0.542i)21-s − 0.331i·23-s + 0.833i·25-s + (−0.136 + 0.136i)27-s + (0.440 + 0.440i)29-s − 1.77·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.136 - 0.990i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.136 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.15121 + 1.32100i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.15121 + 1.32100i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.12 - 2.12i)T \) |
| good | 5 | \( 1 + (-3.22 + 3.22i)T - 125iT^{2} \) |
| 7 | \( 1 - 24.6iT - 343T^{2} \) |
| 11 | \( 1 + (23.7 - 23.7i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (18.6 + 18.6i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + 3.55T + 4.91e3T^{2} \) |
| 19 | \( 1 + (-109. - 109. i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 + 36.5iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-68.8 - 68.8i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 + 306.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (-92.9 + 92.9i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 385. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (150. - 150. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 - 114.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-451. + 451. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (-544. + 544. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (-179. - 179. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (-283. - 283. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + 930. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 701. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 779.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (-296. - 296. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 + 865. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 542.T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.46544767881010919776496628903, −11.44245520954264767524252913411, −10.08714353443336019702520925364, −9.442879298103763600744153238502, −8.435075668946937784016344642396, −7.42578213280957414751693619014, −5.70283252242505469835666091476, −5.03227839052380305240328244777, −3.27549715969744152989787563613, −1.98215776974221411896230085771,
0.73311045421030142295763130830, 2.56980105500589687475835171874, 3.92036369845813433491704617675, 5.42945165888432756688016977814, 6.95150052990113125927522148062, 7.47374563058770393521876231947, 8.770367732832938436455634480491, 9.897939106528267056433158198419, 10.77972011855509677358531048771, 11.75804606743720222881451068860