| L(s) = 1 | + (−2.12 − 2.12i)3-s + (0.644 − 0.644i)5-s + 7.13i·7-s + 8.99i·9-s + (−25.4 + 25.4i)11-s + (−14.6 − 14.6i)13-s − 2.73·15-s + 71.4·17-s + (43.6 + 43.6i)19-s + (15.1 − 15.1i)21-s + 211. i·23-s + 124. i·25-s + (19.0 − 19.0i)27-s + (5.84 + 5.84i)29-s + 107.·31-s + ⋯ |
| L(s) = 1 | + (−0.408 − 0.408i)3-s + (0.0576 − 0.0576i)5-s + 0.385i·7-s + 0.333i·9-s + (−0.697 + 0.697i)11-s + (−0.311 − 0.311i)13-s − 0.0470·15-s + 1.01·17-s + (0.526 + 0.526i)19-s + (0.157 − 0.157i)21-s + 1.92i·23-s + 0.993i·25-s + (0.136 − 0.136i)27-s + (0.0374 + 0.0374i)29-s + 0.624·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.314 - 0.949i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.314 - 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.922574 + 0.665907i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.922574 + 0.665907i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (2.12 + 2.12i)T \) |
| good | 5 | \( 1 + (-0.644 + 0.644i)T - 125iT^{2} \) |
| 7 | \( 1 - 7.13iT - 343T^{2} \) |
| 11 | \( 1 + (25.4 - 25.4i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (14.6 + 14.6i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 - 71.4T + 4.91e3T^{2} \) |
| 19 | \( 1 + (-43.6 - 43.6i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 - 211. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-5.84 - 5.84i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 - 107.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (184. - 184. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 360. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (-312. + 312. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 343.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (249. - 249. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (-152. + 152. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (525. + 525. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (-35.3 - 35.3i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 784. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 800. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 548.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (464. + 464. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 - 302. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.56e3T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.24479878876400809421750571757, −11.50481828466269170101975925146, −10.24751956505260997845720717547, −9.465361570219364520380368919478, −7.956777033202954578681741504947, −7.29040242543020173879224193883, −5.80296271239984874488595481578, −5.04117699935209022974277484641, −3.18910523481190143166755573875, −1.51955599430505472131232086502,
0.54894492285560181882384901147, 2.79536713589259206095256410908, 4.29343954441764035774558698843, 5.43298559566854467645707587753, 6.57798553543347591232901507854, 7.81111136159289286703201788860, 8.930641505627836044696754813323, 10.17961437388251237283721593469, 10.71535076082763610046606781155, 11.86864092277221911316692182096