L(s) = 1 | + (−0.497 + 5.17i)3-s + 18.4i·5-s + 17.1i·7-s + (−26.5 − 5.14i)9-s + 48.1·11-s − 33.7·13-s + (−95.4 − 9.18i)15-s − 84.4i·17-s + 28.7i·19-s + (−88.7 − 8.54i)21-s + 96.4·23-s − 215.·25-s + (39.8 − 134. i)27-s + 141. i·29-s − 51.8i·31-s + ⋯ |
L(s) = 1 | + (−0.0957 + 0.995i)3-s + 1.65i·5-s + 0.926i·7-s + (−0.981 − 0.190i)9-s + 1.32·11-s − 0.719·13-s + (−1.64 − 0.158i)15-s − 1.20i·17-s + 0.346i·19-s + (−0.922 − 0.0887i)21-s + 0.874·23-s − 1.72·25-s + (0.283 − 0.958i)27-s + 0.904i·29-s − 0.300i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0957i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.995 - 0.0957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.0664733 + 1.38476i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0664733 + 1.38476i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.497 - 5.17i)T \) |
good | 5 | \( 1 - 18.4iT - 125T^{2} \) |
| 7 | \( 1 - 17.1iT - 343T^{2} \) |
| 11 | \( 1 - 48.1T + 1.33e3T^{2} \) |
| 13 | \( 1 + 33.7T + 2.19e3T^{2} \) |
| 17 | \( 1 + 84.4iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 28.7iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 96.4T + 1.21e4T^{2} \) |
| 29 | \( 1 - 141. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 51.8iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 323.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 134. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 114. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 247.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 169. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 605.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 343.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 900. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 331.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 777.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 587. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 1.46e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 78.6iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 62.0T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.10311861470010139162908440115, −11.49526398682543573125788692091, −10.60861639789396877231413559609, −9.627337373523770129202046209643, −8.896547184094849252761186534043, −7.23841914832806993911633644079, −6.31213388003831339708323009342, −5.08853484978308337713871146430, −3.55168465538431775784330239305, −2.59688116755758121386239114792,
0.63725025819006377035291163148, 1.65866903103142836794338295966, 3.95117118308198870212404717444, 5.14184775369171488007570229500, 6.45030808633858606303624543968, 7.50740205566147301918766849767, 8.565105968052333220955724251953, 9.310084712003503901207920980570, 10.76522247470650153900392972832, 12.05279989156460021804819910512