L(s) = 1 | + (−4.89 − 1.73i)3-s − 16.9i·5-s − 17.3i·7-s + (20.9 + 16.9i)9-s − 29.3·11-s + 26·13-s + (−29.3 + 83.1i)15-s − 67.8i·17-s + 107. i·19-s + (−30 + 84.8i)21-s − 176.·23-s − 162.·25-s + (−73.4 − 119. i)27-s + 16.9i·29-s − 31.1i·31-s + ⋯ |
L(s) = 1 | + (−0.942 − 0.333i)3-s − 1.51i·5-s − 0.935i·7-s + (0.777 + 0.628i)9-s − 0.805·11-s + 0.554·13-s + (−0.505 + 1.43i)15-s − 0.968i·17-s + 1.29i·19-s + (−0.311 + 0.881i)21-s − 1.59·23-s − 1.30·25-s + (−0.523 − 0.851i)27-s + 0.108i·29-s − 0.180i·31-s + ⋯ |
Λ(s)=(=(192s/2ΓC(s)L(s)(−0.942−0.333i)Λ(4−s)
Λ(s)=(=(192s/2ΓC(s+3/2)L(s)(−0.942−0.333i)Λ(1−s)
Degree: |
2 |
Conductor: |
192
= 26⋅3
|
Sign: |
−0.942−0.333i
|
Analytic conductor: |
11.3283 |
Root analytic conductor: |
3.36576 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ192(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 192, ( :3/2), −0.942−0.333i)
|
Particular Values
L(2) |
≈ |
0.0942736+0.549466i |
L(21) |
≈ |
0.0942736+0.549466i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(4.89+1.73i)T |
good | 5 | 1+16.9iT−125T2 |
| 7 | 1+17.3iT−343T2 |
| 11 | 1+29.3T+1.33e3T2 |
| 13 | 1−26T+2.19e3T2 |
| 17 | 1+67.8iT−4.91e3T2 |
| 19 | 1−107.iT−6.85e3T2 |
| 23 | 1+176.T+1.21e4T2 |
| 29 | 1−16.9iT−2.43e4T2 |
| 31 | 1+31.1iT−2.97e4T2 |
| 37 | 1+206T+5.06e4T2 |
| 41 | 1−305.iT−6.89e4T2 |
| 43 | 1−93.5iT−7.95e4T2 |
| 47 | 1−117.T+1.03e5T2 |
| 53 | 1−50.9iT−1.48e5T2 |
| 59 | 1−558.T+2.05e5T2 |
| 61 | 1+278T+2.26e5T2 |
| 67 | 1+890.iT−3.00e5T2 |
| 71 | 1+58.7T+3.57e5T2 |
| 73 | 1+422T+3.89e5T2 |
| 79 | 1+668.iT−4.93e5T2 |
| 83 | 1−29.3T+5.71e5T2 |
| 89 | 1−373.iT−7.04e5T2 |
| 97 | 1+1.07e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.74599328131394009884232945925, −10.55598659633986751871479449524, −9.743204941133572199936213886781, −8.286059964108047490627256026812, −7.51465416148392328939777908135, −6.05543776285219732014035139823, −5.09109086617813649083046122909, −4.10167408959360952729375887294, −1.50355090523781583354615996836, −0.27973072640983627071548291840,
2.37294450124460525331379994650, 3.81693371236585325364567291328, 5.46080414388818819171037104086, 6.26134310222814292622176743740, 7.23858673239299916003238330386, 8.667010718951912131482805044013, 10.08263429154997637120619718297, 10.67180690728042434204861446892, 11.48203687794604839049218485780, 12.37251512002616778523585111187