L(s) = 1 | + (3.28 − 4.02i)3-s + 2.00i·5-s + 14.5i·7-s + (−5.45 − 26.4i)9-s + 50.3·11-s + 71.3·13-s + (8.05 + 6.56i)15-s − 64.1i·17-s − 21.1i·19-s + (58.4 + 47.6i)21-s − 129.·23-s + 120.·25-s + (−124. − 64.8i)27-s − 295. i·29-s + 71.7i·31-s + ⋯ |
L(s) = 1 | + (0.631 − 0.775i)3-s + 0.178i·5-s + 0.783i·7-s + (−0.201 − 0.979i)9-s + 1.37·11-s + 1.52·13-s + (0.138 + 0.113i)15-s − 0.915i·17-s − 0.255i·19-s + (0.607 + 0.494i)21-s − 1.17·23-s + 0.967·25-s + (−0.886 − 0.462i)27-s − 1.89i·29-s + 0.415i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.775 + 0.631i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.775 + 0.631i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.20592 - 0.784910i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.20592 - 0.784910i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-3.28 + 4.02i)T \) |
good | 5 | \( 1 - 2.00iT - 125T^{2} \) |
| 7 | \( 1 - 14.5iT - 343T^{2} \) |
| 11 | \( 1 - 50.3T + 1.33e3T^{2} \) |
| 13 | \( 1 - 71.3T + 2.19e3T^{2} \) |
| 17 | \( 1 + 64.1iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 21.1iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 129.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 295. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 71.7iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 33.9T + 5.06e4T^{2} \) |
| 41 | \( 1 - 315. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 474. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 116.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 219. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 495.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 224.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 127. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 526.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 526.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.28e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 357.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 328. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.19e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.88727129102287589338293478582, −11.39856532715040607320157658229, −9.677874021776168351213204567131, −8.867373233381201222024692764260, −8.045662549701458222857389541947, −6.67100615871894899589259800766, −6.00531164494291083577169634869, −4.03764708642250432854784493440, −2.71495871858190289210028793477, −1.21672723353481545371116600363,
1.48051869534338500175813300863, 3.61005827124136163723386492477, 4.15326203312710367345832369052, 5.80537798755938489421931948821, 7.09600224478478507107651668979, 8.506699239788362146319999893534, 8.999922303835848559400867735307, 10.34413184301566335313711136773, 10.88143892658884258783058714703, 12.17173494711337475772018691644