Properties

Label 2-1904-1.1-c1-0-41
Degree $2$
Conductor $1904$
Sign $-1$
Analytic cond. $15.2035$
Root an. cond. $3.89916$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.10·3-s − 3.40·5-s + 7-s + 1.43·9-s + 1.23·11-s − 6.47·13-s − 7.17·15-s + 17-s + 2.21·19-s + 2.10·21-s − 1.39·23-s + 6.60·25-s − 3.30·27-s − 0.633·29-s − 0.965·31-s + 2.60·33-s − 3.40·35-s − 8.31·37-s − 13.6·39-s − 5.60·41-s − 11.0·43-s − 4.87·45-s − 7.67·47-s + 49-s + 2.10·51-s + 11.7·53-s − 4.21·55-s + ⋯
L(s)  = 1  + 1.21·3-s − 1.52·5-s + 0.377·7-s + 0.477·9-s + 0.372·11-s − 1.79·13-s − 1.85·15-s + 0.242·17-s + 0.507·19-s + 0.459·21-s − 0.291·23-s + 1.32·25-s − 0.635·27-s − 0.117·29-s − 0.173·31-s + 0.452·33-s − 0.575·35-s − 1.36·37-s − 2.18·39-s − 0.875·41-s − 1.68·43-s − 0.727·45-s − 1.11·47-s + 0.142·49-s + 0.294·51-s + 1.60·53-s − 0.567·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1904 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1904 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1904\)    =    \(2^{4} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(15.2035\)
Root analytic conductor: \(3.89916\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1904,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good3 \( 1 - 2.10T + 3T^{2} \)
5 \( 1 + 3.40T + 5T^{2} \)
11 \( 1 - 1.23T + 11T^{2} \)
13 \( 1 + 6.47T + 13T^{2} \)
19 \( 1 - 2.21T + 19T^{2} \)
23 \( 1 + 1.39T + 23T^{2} \)
29 \( 1 + 0.633T + 29T^{2} \)
31 \( 1 + 0.965T + 31T^{2} \)
37 \( 1 + 8.31T + 37T^{2} \)
41 \( 1 + 5.60T + 41T^{2} \)
43 \( 1 + 11.0T + 43T^{2} \)
47 \( 1 + 7.67T + 47T^{2} \)
53 \( 1 - 11.7T + 53T^{2} \)
59 \( 1 - 0.602T + 59T^{2} \)
61 \( 1 + 9.84T + 61T^{2} \)
67 \( 1 + 5.30T + 67T^{2} \)
71 \( 1 - 3.33T + 71T^{2} \)
73 \( 1 - 14.0T + 73T^{2} \)
79 \( 1 - 0.323T + 79T^{2} \)
83 \( 1 + 13.8T + 83T^{2} \)
89 \( 1 + 14.7T + 89T^{2} \)
97 \( 1 + 5.90T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.529725784747750142335040694478, −8.163368493990852981866134151074, −7.36828435050252635395689842704, −6.96533782031094690438592464026, −5.32454458171692868630858501985, −4.53558909667300863919179729368, −3.62498850997454474272934263897, −3.00859459784992687899187139590, −1.85430439698695992713526001106, 0, 1.85430439698695992713526001106, 3.00859459784992687899187139590, 3.62498850997454474272934263897, 4.53558909667300863919179729368, 5.32454458171692868630858501985, 6.96533782031094690438592464026, 7.36828435050252635395689842704, 8.163368493990852981866134151074, 8.529725784747750142335040694478

Graph of the $Z$-function along the critical line