Properties

Label 2-1900-5.4-c3-0-75
Degree $2$
Conductor $1900$
Sign $-0.447 - 0.894i$
Analytic cond. $112.103$
Root an. cond. $10.5879$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.92i·3-s + 9.10i·7-s − 20.9·9-s − 10.6·11-s − 63.6i·13-s + 77.2i·17-s − 19·19-s + 63.0·21-s − 144. i·23-s − 42.2i·27-s − 51.2·29-s + 71.5·31-s + 73.3i·33-s − 75.9i·37-s − 440.·39-s + ⋯
L(s)  = 1  − 1.33i·3-s + 0.491i·7-s − 0.774·9-s − 0.290·11-s − 1.35i·13-s + 1.10i·17-s − 0.229·19-s + 0.655·21-s − 1.31i·23-s − 0.300i·27-s − 0.327·29-s + 0.414·31-s + 0.387i·33-s − 0.337i·37-s − 1.80·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1900\)    =    \(2^{2} \cdot 5^{2} \cdot 19\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(112.103\)
Root analytic conductor: \(10.5879\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1900} (1749, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1900,\ (\ :3/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3802842626\)
\(L(\frac12)\) \(\approx\) \(0.3802842626\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + 19T \)
good3 \( 1 + 6.92iT - 27T^{2} \)
7 \( 1 - 9.10iT - 343T^{2} \)
11 \( 1 + 10.6T + 1.33e3T^{2} \)
13 \( 1 + 63.6iT - 2.19e3T^{2} \)
17 \( 1 - 77.2iT - 4.91e3T^{2} \)
23 \( 1 + 144. iT - 1.21e4T^{2} \)
29 \( 1 + 51.2T + 2.43e4T^{2} \)
31 \( 1 - 71.5T + 2.97e4T^{2} \)
37 \( 1 + 75.9iT - 5.06e4T^{2} \)
41 \( 1 + 1.95T + 6.89e4T^{2} \)
43 \( 1 - 242. iT - 7.95e4T^{2} \)
47 \( 1 + 594. iT - 1.03e5T^{2} \)
53 \( 1 + 124. iT - 1.48e5T^{2} \)
59 \( 1 + 556.T + 2.05e5T^{2} \)
61 \( 1 - 0.544T + 2.26e5T^{2} \)
67 \( 1 - 634. iT - 3.00e5T^{2} \)
71 \( 1 + 163.T + 3.57e5T^{2} \)
73 \( 1 - 428. iT - 3.89e5T^{2} \)
79 \( 1 + 1.24e3T + 4.93e5T^{2} \)
83 \( 1 - 903. iT - 5.71e5T^{2} \)
89 \( 1 - 241.T + 7.04e5T^{2} \)
97 \( 1 + 10.8iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.284250485349568429214175861551, −7.59402582442255682300365089449, −6.74706046822283347571043700116, −6.02724028480045338807911644372, −5.37524601932565133278717217985, −4.14733282097920278889262072946, −2.90093053329723771350918442657, −2.16827425089326198400222730124, −1.10420348503545236004057240920, −0.082257819260734454519958181223, 1.48318600099407123281576413023, 2.82991509025072895617553702576, 3.77481472285331268819718796455, 4.47754614709782764300673622038, 5.08536785692556078148392901012, 6.10333403590739738515687311572, 7.11949005260759134022725332698, 7.76107209465206607620662628649, 9.122185229598800280355790326059, 9.232652923066758701139921410209

Graph of the $Z$-function along the critical line