Properties

Label 2-1900-1.1-c3-0-56
Degree $2$
Conductor $1900$
Sign $-1$
Analytic cond. $112.103$
Root an. cond. $10.5879$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 19·7-s − 26·9-s + 20·11-s + 77·13-s + 11·17-s − 19·19-s + 19·21-s − 79·23-s + 53·27-s − 303·29-s + 214·31-s − 20·33-s + 250·37-s − 77·39-s − 230·41-s + 402·43-s − 48·47-s + 18·49-s − 11·51-s + 417·53-s + 19·57-s + 99·59-s + 332·61-s + 494·63-s + 319·67-s + 79·69-s + ⋯
L(s)  = 1  − 0.192·3-s − 1.02·7-s − 0.962·9-s + 0.548·11-s + 1.64·13-s + 0.156·17-s − 0.229·19-s + 0.197·21-s − 0.716·23-s + 0.377·27-s − 1.94·29-s + 1.23·31-s − 0.105·33-s + 1.11·37-s − 0.316·39-s − 0.876·41-s + 1.42·43-s − 0.148·47-s + 0.0524·49-s − 0.0302·51-s + 1.08·53-s + 0.0441·57-s + 0.218·59-s + 0.696·61-s + 0.987·63-s + 0.581·67-s + 0.137·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1900\)    =    \(2^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(112.103\)
Root analytic conductor: \(10.5879\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1900,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + p T \)
good3 \( 1 + T + p^{3} T^{2} \)
7 \( 1 + 19 T + p^{3} T^{2} \)
11 \( 1 - 20 T + p^{3} T^{2} \)
13 \( 1 - 77 T + p^{3} T^{2} \)
17 \( 1 - 11 T + p^{3} T^{2} \)
23 \( 1 + 79 T + p^{3} T^{2} \)
29 \( 1 + 303 T + p^{3} T^{2} \)
31 \( 1 - 214 T + p^{3} T^{2} \)
37 \( 1 - 250 T + p^{3} T^{2} \)
41 \( 1 + 230 T + p^{3} T^{2} \)
43 \( 1 - 402 T + p^{3} T^{2} \)
47 \( 1 + 48 T + p^{3} T^{2} \)
53 \( 1 - 417 T + p^{3} T^{2} \)
59 \( 1 - 99 T + p^{3} T^{2} \)
61 \( 1 - 332 T + p^{3} T^{2} \)
67 \( 1 - 319 T + p^{3} T^{2} \)
71 \( 1 + 1088 T + p^{3} T^{2} \)
73 \( 1 - 373 T + p^{3} T^{2} \)
79 \( 1 - 102 T + p^{3} T^{2} \)
83 \( 1 + 934 T + p^{3} T^{2} \)
89 \( 1 - 498 T + p^{3} T^{2} \)
97 \( 1 - 1386 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.585290763677679997234240973143, −7.75699141772626498252343873406, −6.61252432099887349126501757329, −6.10336212059521382223525639147, −5.52498664023931716424608757298, −4.08758087949949226868353638413, −3.51405996214655513134019488739, −2.49662233880183450845382116962, −1.13540099310160617403245917882, 0, 1.13540099310160617403245917882, 2.49662233880183450845382116962, 3.51405996214655513134019488739, 4.08758087949949226868353638413, 5.52498664023931716424608757298, 6.10336212059521382223525639147, 6.61252432099887349126501757329, 7.75699141772626498252343873406, 8.585290763677679997234240973143

Graph of the $Z$-function along the critical line