L(s) = 1 | + i·2-s − 0.414i·3-s − 4-s + (0.707 − 2.12i)5-s + 0.414·6-s − 4.41i·7-s − i·8-s + 2.82·9-s + (2.12 + 0.707i)10-s − 1.41·11-s + 0.414i·12-s + 5.82i·13-s + 4.41·14-s + (−0.878 − 0.292i)15-s + 16-s − i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.239i·3-s − 0.5·4-s + (0.316 − 0.948i)5-s + 0.169·6-s − 1.66i·7-s − 0.353i·8-s + 0.942·9-s + (0.670 + 0.223i)10-s − 0.426·11-s + 0.119i·12-s + 1.61i·13-s + 1.17·14-s + (−0.226 − 0.0756i)15-s + 0.250·16-s − 0.242i·17-s + ⋯ |
Λ(s)=(=(190s/2ΓC(s)L(s)(0.948+0.316i)Λ(2−s)
Λ(s)=(=(190s/2ΓC(s+1/2)L(s)(0.948+0.316i)Λ(1−s)
Degree: |
2 |
Conductor: |
190
= 2⋅5⋅19
|
Sign: |
0.948+0.316i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ190(39,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 190, ( :1/2), 0.948+0.316i)
|
Particular Values
L(1) |
≈ |
1.17725−0.191042i |
L(21) |
≈ |
1.17725−0.191042i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 5 | 1+(−0.707+2.12i)T |
| 19 | 1−T |
good | 3 | 1+0.414iT−3T2 |
| 7 | 1+4.41iT−7T2 |
| 11 | 1+1.41T+11T2 |
| 13 | 1−5.82iT−13T2 |
| 17 | 1+iT−17T2 |
| 23 | 1−0.757iT−23T2 |
| 29 | 1−0.171T+29T2 |
| 31 | 1−6.24T+31T2 |
| 37 | 1−8.48iT−37T2 |
| 41 | 1+4.24T+41T2 |
| 43 | 1−1.75iT−43T2 |
| 47 | 1−47T2 |
| 53 | 1−5.48iT−53T2 |
| 59 | 1+6.89T+59T2 |
| 61 | 1−14.2T+61T2 |
| 67 | 1+4.75iT−67T2 |
| 71 | 1+13.4T+71T2 |
| 73 | 1−11.4iT−73T2 |
| 79 | 1−6.48T+79T2 |
| 83 | 1−14.4iT−83T2 |
| 89 | 1+7.07T+89T2 |
| 97 | 1−0.343iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.84026262976644013734149674382, −11.66709833529382198081184685133, −10.20811269563823693358341426021, −9.555864716288353031490040441524, −8.273651025419585526355966086043, −7.26595641815642898297319851997, −6.51151305988833745420259071204, −4.80663747676699940447118266967, −4.13756085135327951424793360402, −1.27961502630059768149103804813,
2.28095108453774903385387795096, 3.31919267666252988739955505355, 5.12621272769236787494226985625, 6.07929888080104895390591115765, 7.64908703923777749395982372292, 8.808212735528691310948521915042, 9.968751386454530848925602530910, 10.47766264112560788309307808799, 11.61628367479862979123327885029, 12.58310225874120778139327131706