L(s) = 1 | + i·2-s − 0.414i·3-s − 4-s + (0.707 − 2.12i)5-s + 0.414·6-s − 4.41i·7-s − i·8-s + 2.82·9-s + (2.12 + 0.707i)10-s − 1.41·11-s + 0.414i·12-s + 5.82i·13-s + 4.41·14-s + (−0.878 − 0.292i)15-s + 16-s − i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.239i·3-s − 0.5·4-s + (0.316 − 0.948i)5-s + 0.169·6-s − 1.66i·7-s − 0.353i·8-s + 0.942·9-s + (0.670 + 0.223i)10-s − 0.426·11-s + 0.119i·12-s + 1.61i·13-s + 1.17·14-s + (−0.226 − 0.0756i)15-s + 0.250·16-s − 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.948 + 0.316i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.948 + 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.17725 - 0.191042i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.17725 - 0.191042i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 + (-0.707 + 2.12i)T \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 + 0.414iT - 3T^{2} \) |
| 7 | \( 1 + 4.41iT - 7T^{2} \) |
| 11 | \( 1 + 1.41T + 11T^{2} \) |
| 13 | \( 1 - 5.82iT - 13T^{2} \) |
| 17 | \( 1 + iT - 17T^{2} \) |
| 23 | \( 1 - 0.757iT - 23T^{2} \) |
| 29 | \( 1 - 0.171T + 29T^{2} \) |
| 31 | \( 1 - 6.24T + 31T^{2} \) |
| 37 | \( 1 - 8.48iT - 37T^{2} \) |
| 41 | \( 1 + 4.24T + 41T^{2} \) |
| 43 | \( 1 - 1.75iT - 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 - 5.48iT - 53T^{2} \) |
| 59 | \( 1 + 6.89T + 59T^{2} \) |
| 61 | \( 1 - 14.2T + 61T^{2} \) |
| 67 | \( 1 + 4.75iT - 67T^{2} \) |
| 71 | \( 1 + 13.4T + 71T^{2} \) |
| 73 | \( 1 - 11.4iT - 73T^{2} \) |
| 79 | \( 1 - 6.48T + 79T^{2} \) |
| 83 | \( 1 - 14.4iT - 83T^{2} \) |
| 89 | \( 1 + 7.07T + 89T^{2} \) |
| 97 | \( 1 - 0.343iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.84026262976644013734149674382, −11.66709833529382198081184685133, −10.20811269563823693358341426021, −9.555864716288353031490040441524, −8.273651025419585526355966086043, −7.26595641815642898297319851997, −6.51151305988833745420259071204, −4.80663747676699940447118266967, −4.13756085135327951424793360402, −1.27961502630059768149103804813,
2.28095108453774903385387795096, 3.31919267666252988739955505355, 5.12621272769236787494226985625, 6.07929888080104895390591115765, 7.64908703923777749395982372292, 8.808212735528691310948521915042, 9.968751386454530848925602530910, 10.47766264112560788309307808799, 11.61628367479862979123327885029, 12.58310225874120778139327131706