L(s) = 1 | + i·2-s + 2.41i·3-s − 4-s + (−0.707 + 2.12i)5-s − 2.41·6-s − 1.58i·7-s − i·8-s − 2.82·9-s + (−2.12 − 0.707i)10-s + 1.41·11-s − 2.41i·12-s + 0.171i·13-s + 1.58·14-s + (−5.12 − 1.70i)15-s + 16-s − i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.39i·3-s − 0.5·4-s + (−0.316 + 0.948i)5-s − 0.985·6-s − 0.599i·7-s − 0.353i·8-s − 0.942·9-s + (−0.670 − 0.223i)10-s + 0.426·11-s − 0.696i·12-s + 0.0475i·13-s + 0.423·14-s + (−1.32 − 0.440i)15-s + 0.250·16-s − 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.948 - 0.316i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.948 - 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.165606 + 1.02051i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.165606 + 1.02051i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 + (0.707 - 2.12i)T \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 - 2.41iT - 3T^{2} \) |
| 7 | \( 1 + 1.58iT - 7T^{2} \) |
| 11 | \( 1 - 1.41T + 11T^{2} \) |
| 13 | \( 1 - 0.171iT - 13T^{2} \) |
| 17 | \( 1 + iT - 17T^{2} \) |
| 23 | \( 1 - 9.24iT - 23T^{2} \) |
| 29 | \( 1 - 5.82T + 29T^{2} \) |
| 31 | \( 1 + 2.24T + 31T^{2} \) |
| 37 | \( 1 + 8.48iT - 37T^{2} \) |
| 41 | \( 1 - 4.24T + 41T^{2} \) |
| 43 | \( 1 - 10.2iT - 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 + 11.4iT - 53T^{2} \) |
| 59 | \( 1 - 12.8T + 59T^{2} \) |
| 61 | \( 1 - 5.75T + 61T^{2} \) |
| 67 | \( 1 + 13.2iT - 67T^{2} \) |
| 71 | \( 1 + 10.5T + 71T^{2} \) |
| 73 | \( 1 + 5.48iT - 73T^{2} \) |
| 79 | \( 1 + 10.4T + 79T^{2} \) |
| 83 | \( 1 + 2.48iT - 83T^{2} \) |
| 89 | \( 1 - 7.07T + 89T^{2} \) |
| 97 | \( 1 - 11.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.34346586336105038487837998677, −11.69604908165872583763493940479, −10.84901936046373798613611491902, −9.944956264859400231546112847225, −9.226144204304388266739620464857, −7.79979579212299474698012779559, −6.86047977285913236053756656268, −5.52828841874755400543496406976, −4.23857975780464608175410516167, −3.40229962401988518157623825290,
1.02863569598538131335492315274, 2.47081895956652662150183068552, 4.34788560192156619957240912078, 5.75494901080164014983248105951, 7.00122589752917130978013107794, 8.331790816653528889246242339463, 8.795189014303045954545592437461, 10.22131867102649119884809628737, 11.65936551462715246284612406980, 12.21325008976842428965606723517