L(s) = 1 | + i·2-s + 2.41i·3-s − 4-s + (−0.707 + 2.12i)5-s − 2.41·6-s − 1.58i·7-s − i·8-s − 2.82·9-s + (−2.12 − 0.707i)10-s + 1.41·11-s − 2.41i·12-s + 0.171i·13-s + 1.58·14-s + (−5.12 − 1.70i)15-s + 16-s − i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.39i·3-s − 0.5·4-s + (−0.316 + 0.948i)5-s − 0.985·6-s − 0.599i·7-s − 0.353i·8-s − 0.942·9-s + (−0.670 − 0.223i)10-s + 0.426·11-s − 0.696i·12-s + 0.0475i·13-s + 0.423·14-s + (−1.32 − 0.440i)15-s + 0.250·16-s − 0.242i·17-s + ⋯ |
Λ(s)=(=(190s/2ΓC(s)L(s)(−0.948−0.316i)Λ(2−s)
Λ(s)=(=(190s/2ΓC(s+1/2)L(s)(−0.948−0.316i)Λ(1−s)
Degree: |
2 |
Conductor: |
190
= 2⋅5⋅19
|
Sign: |
−0.948−0.316i
|
Analytic conductor: |
1.51715 |
Root analytic conductor: |
1.23172 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ190(39,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 190, ( :1/2), −0.948−0.316i)
|
Particular Values
L(1) |
≈ |
0.165606+1.02051i |
L(21) |
≈ |
0.165606+1.02051i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 5 | 1+(0.707−2.12i)T |
| 19 | 1−T |
good | 3 | 1−2.41iT−3T2 |
| 7 | 1+1.58iT−7T2 |
| 11 | 1−1.41T+11T2 |
| 13 | 1−0.171iT−13T2 |
| 17 | 1+iT−17T2 |
| 23 | 1−9.24iT−23T2 |
| 29 | 1−5.82T+29T2 |
| 31 | 1+2.24T+31T2 |
| 37 | 1+8.48iT−37T2 |
| 41 | 1−4.24T+41T2 |
| 43 | 1−10.2iT−43T2 |
| 47 | 1−47T2 |
| 53 | 1+11.4iT−53T2 |
| 59 | 1−12.8T+59T2 |
| 61 | 1−5.75T+61T2 |
| 67 | 1+13.2iT−67T2 |
| 71 | 1+10.5T+71T2 |
| 73 | 1+5.48iT−73T2 |
| 79 | 1+10.4T+79T2 |
| 83 | 1+2.48iT−83T2 |
| 89 | 1−7.07T+89T2 |
| 97 | 1−11.6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.34346586336105038487837998677, −11.69604908165872583763493940479, −10.84901936046373798613611491902, −9.944956264859400231546112847225, −9.226144204304388266739620464857, −7.79979579212299474698012779559, −6.86047977285913236053756656268, −5.52828841874755400543496406976, −4.23857975780464608175410516167, −3.40229962401988518157623825290,
1.02863569598538131335492315274, 2.47081895956652662150183068552, 4.34788560192156619957240912078, 5.75494901080164014983248105951, 7.00122589752917130978013107794, 8.331790816653528889246242339463, 8.795189014303045954545592437461, 10.22131867102649119884809628737, 11.65936551462715246284612406980, 12.21325008976842428965606723517