| L(s) = 1 | + (−1.50 + 2.39i)2-s + (−3.47 − 7.20i)4-s + 12.5i·5-s + 7.52i·7-s + (22.4 + 2.50i)8-s + (−30.1 − 18.9i)10-s + 67.4·11-s + 29.7·13-s + (−18.0 − 11.3i)14-s + (−39.8 + 50.1i)16-s − 66.7i·17-s − 59.4i·19-s + (90.6 − 43.7i)20-s + (−101. + 161. i)22-s + 58.7·23-s + ⋯ |
| L(s) = 1 | + (−0.531 + 0.846i)2-s + (−0.434 − 0.900i)4-s + 1.12i·5-s + 0.406i·7-s + (0.993 + 0.110i)8-s + (−0.953 − 0.598i)10-s + 1.84·11-s + 0.634·13-s + (−0.343 − 0.215i)14-s + (−0.622 + 0.782i)16-s − 0.952i·17-s − 0.717i·19-s + (1.01 − 0.489i)20-s + (−0.983 + 1.56i)22-s + 0.532·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.434 - 0.900i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.434 - 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.503194543\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.503194543\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.50 - 2.39i)T \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 - 12.5iT - 125T^{2} \) |
| 7 | \( 1 - 7.52iT - 343T^{2} \) |
| 11 | \( 1 - 67.4T + 1.33e3T^{2} \) |
| 13 | \( 1 - 29.7T + 2.19e3T^{2} \) |
| 17 | \( 1 + 66.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 59.4iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 58.7T + 1.21e4T^{2} \) |
| 29 | \( 1 - 198. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 123. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 159.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 4.44iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 508. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 625.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 513. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 417.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 860.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 722. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 168.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 882.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 301. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 270.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 16.7iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 185.T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.18299590754133478172745849465, −10.56921821583971009987228542829, −9.151223593854855594338433156069, −8.983236505858405915586537702751, −7.37174188312252990593583830144, −6.76116957275775078431990613010, −5.98483408143151901132933792130, −4.58423811314138503636608938252, −3.10426650834187377406181604220, −1.26907348207025556486238109153,
0.809892225056669140032155420598, 1.72051693152620401777759192928, 3.75952658316215625941579281899, 4.29407459704337166696021415734, 5.91532578026902669196606135284, 7.26245507099109957168666508485, 8.532270168913284158723022527459, 8.926535698625134680915160122459, 9.911039629421608292642417727243, 10.88711493248714107219633354855