| L(s) = 1 | + (−2.80 + 0.379i)2-s + (7.71 − 2.12i)4-s − 6.12i·5-s + 4.70i·7-s + (−20.8 + 8.88i)8-s + (2.32 + 17.1i)10-s − 13.0·11-s + 38.9·13-s + (−1.78 − 13.1i)14-s + (54.9 − 32.7i)16-s + 30.4i·17-s + 132. i·19-s + (−13.0 − 47.2i)20-s + (36.5 − 4.95i)22-s − 56.7·23-s + ⋯ |
| L(s) = 1 | + (−0.990 + 0.134i)2-s + (0.964 − 0.265i)4-s − 0.548i·5-s + 0.253i·7-s + (−0.919 + 0.392i)8-s + (0.0735 + 0.543i)10-s − 0.357·11-s + 0.830·13-s + (−0.0340 − 0.251i)14-s + (0.858 − 0.512i)16-s + 0.434i·17-s + 1.59i·19-s + (−0.145 − 0.528i)20-s + (0.354 − 0.0479i)22-s − 0.514·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.140919517\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.140919517\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (2.80 - 0.379i)T \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + 6.12iT - 125T^{2} \) |
| 7 | \( 1 - 4.70iT - 343T^{2} \) |
| 11 | \( 1 + 13.0T + 1.33e3T^{2} \) |
| 13 | \( 1 - 38.9T + 2.19e3T^{2} \) |
| 17 | \( 1 - 30.4iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 132. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 56.7T + 1.21e4T^{2} \) |
| 29 | \( 1 + 259. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 208. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 67.4T + 5.06e4T^{2} \) |
| 41 | \( 1 - 276. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 220. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 452.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 422. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 666.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 212.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 697. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 479.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 668.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.12e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 947.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 63.5iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 605.T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06902614672195408121251069854, −10.13624849420311485996065614890, −9.342883122391301518864101017071, −8.268789272668600720995356576584, −7.84102081539971035892661751607, −6.31264444544836341600087706969, −5.64483565371408203049369972853, −3.96125662834816246279957972086, −2.30631233588117856959739291681, −0.939140591055061821616308066947,
0.78123121404387396176898610015, 2.42628597266157834460094540350, 3.55104232393775285107947085479, 5.31422374985046638215144771626, 6.76254540405232827879747874286, 7.19426217517068570101465423124, 8.530838995583942076438908997377, 9.137170369487753207939384077979, 10.46816680850911041433070697598, 10.78821069695940042491705301569