| L(s) = 1 | + (−2.14 − 1.84i)2-s + (1.19 + 7.91i)4-s + 4.97i·5-s − 3.54i·7-s + (12.0 − 19.1i)8-s + (9.16 − 10.6i)10-s + 44.3·11-s − 61.3·13-s + (−6.54 + 7.60i)14-s + (−61.1 + 18.9i)16-s − 99.9i·17-s + 85.6i·19-s + (−39.3 + 5.94i)20-s + (−95.1 − 81.8i)22-s + 82.6·23-s + ⋯ |
| L(s) = 1 | + (−0.758 − 0.652i)2-s + (0.149 + 0.988i)4-s + 0.444i·5-s − 0.191i·7-s + (0.531 − 0.846i)8-s + (0.289 − 0.337i)10-s + 1.21·11-s − 1.30·13-s + (−0.124 + 0.145i)14-s + (−0.955 + 0.295i)16-s − 1.42i·17-s + 1.03i·19-s + (−0.439 + 0.0664i)20-s + (−0.922 − 0.793i)22-s + 0.748·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.149i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.988 - 0.149i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.196316894\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.196316894\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (2.14 + 1.84i)T \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 - 4.97iT - 125T^{2} \) |
| 7 | \( 1 + 3.54iT - 343T^{2} \) |
| 11 | \( 1 - 44.3T + 1.33e3T^{2} \) |
| 13 | \( 1 + 61.3T + 2.19e3T^{2} \) |
| 17 | \( 1 + 99.9iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 85.6iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 82.6T + 1.21e4T^{2} \) |
| 29 | \( 1 - 176. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 197. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 172.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 44.1iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 78.1iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 459.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 290. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 295.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 494.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 22.5iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 304.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.16e3T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.11e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 801.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 346. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 582.T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10034006105583778764187817296, −10.26045529432286070324327080328, −9.411828304534067740374743458245, −8.656527001266287354004330335605, −7.20930545294135869871710093150, −6.92544163239535558273930536684, −5.03005709342268742274151105894, −3.67215892854532028277944946055, −2.57039751085476218893725896644, −1.04566610856476535811471047002,
0.71042749634116029817908209040, 2.20402529869590825287878367818, 4.25945961091428734625621436193, 5.36113658938423077477765498495, 6.47969691314295704014505240345, 7.31298998228351930529105632220, 8.466258430278539211308215025824, 9.158861504226011622110926016751, 9.946072755221323271183363973534, 11.02637835160358736945641960799