Properties

Label 2-18e2-1.1-c3-0-8
Degree $2$
Conductor $324$
Sign $-1$
Analytic cond. $19.1166$
Root an. cond. $4.37225$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.89·5-s − 10.6·7-s + 35.4·11-s + 72.7·13-s − 127.·17-s − 46.3·19-s − 131.·23-s − 101.·25-s − 137.·29-s − 106.·31-s + 52.1·35-s + 137.·37-s − 71.7·41-s + 376.·43-s − 613.·47-s − 229.·49-s − 431.·53-s − 173.·55-s − 285.·59-s − 43.9·61-s − 356.·65-s − 45.2·67-s + 357.·71-s + 530.·73-s − 377.·77-s − 195.·79-s + 760.·83-s + ⋯
L(s)  = 1  − 0.438·5-s − 0.575·7-s + 0.971·11-s + 1.55·13-s − 1.81·17-s − 0.560·19-s − 1.18·23-s − 0.808·25-s − 0.880·29-s − 0.614·31-s + 0.252·35-s + 0.610·37-s − 0.273·41-s + 1.33·43-s − 1.90·47-s − 0.669·49-s − 1.11·53-s − 0.425·55-s − 0.630·59-s − 0.0922·61-s − 0.679·65-s − 0.0824·67-s + 0.597·71-s + 0.850·73-s − 0.559·77-s − 0.277·79-s + 1.00·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(324\)    =    \(2^{2} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(19.1166\)
Root analytic conductor: \(4.37225\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 324,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 4.89T + 125T^{2} \)
7 \( 1 + 10.6T + 343T^{2} \)
11 \( 1 - 35.4T + 1.33e3T^{2} \)
13 \( 1 - 72.7T + 2.19e3T^{2} \)
17 \( 1 + 127.T + 4.91e3T^{2} \)
19 \( 1 + 46.3T + 6.85e3T^{2} \)
23 \( 1 + 131.T + 1.21e4T^{2} \)
29 \( 1 + 137.T + 2.43e4T^{2} \)
31 \( 1 + 106.T + 2.97e4T^{2} \)
37 \( 1 - 137.T + 5.06e4T^{2} \)
41 \( 1 + 71.7T + 6.89e4T^{2} \)
43 \( 1 - 376.T + 7.95e4T^{2} \)
47 \( 1 + 613.T + 1.03e5T^{2} \)
53 \( 1 + 431.T + 1.48e5T^{2} \)
59 \( 1 + 285.T + 2.05e5T^{2} \)
61 \( 1 + 43.9T + 2.26e5T^{2} \)
67 \( 1 + 45.2T + 3.00e5T^{2} \)
71 \( 1 - 357.T + 3.57e5T^{2} \)
73 \( 1 - 530.T + 3.89e5T^{2} \)
79 \( 1 + 195.T + 4.93e5T^{2} \)
83 \( 1 - 760.T + 5.71e5T^{2} \)
89 \( 1 + 1.21e3T + 7.04e5T^{2} \)
97 \( 1 + 1.10e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02608164315251700458172723562, −9.640751371593460439974640225125, −8.872939536217413203682903037381, −7.955495241578396877950963273317, −6.59555773876972167411142405218, −6.07838104573034270751177817638, −4.30092263797932407365632121256, −3.59427183906464709241119251694, −1.82945016722240501372940533717, 0, 1.82945016722240501372940533717, 3.59427183906464709241119251694, 4.30092263797932407365632121256, 6.07838104573034270751177817638, 6.59555773876972167411142405218, 7.955495241578396877950963273317, 8.872939536217413203682903037381, 9.640751371593460439974640225125, 11.02608164315251700458172723562

Graph of the $Z$-function along the critical line