L(s) = 1 | − 4.89·5-s − 10.6·7-s + 35.4·11-s + 72.7·13-s − 127.·17-s − 46.3·19-s − 131.·23-s − 101.·25-s − 137.·29-s − 106.·31-s + 52.1·35-s + 137.·37-s − 71.7·41-s + 376.·43-s − 613.·47-s − 229.·49-s − 431.·53-s − 173.·55-s − 285.·59-s − 43.9·61-s − 356.·65-s − 45.2·67-s + 357.·71-s + 530.·73-s − 377.·77-s − 195.·79-s + 760.·83-s + ⋯ |
L(s) = 1 | − 0.438·5-s − 0.575·7-s + 0.971·11-s + 1.55·13-s − 1.81·17-s − 0.560·19-s − 1.18·23-s − 0.808·25-s − 0.880·29-s − 0.614·31-s + 0.252·35-s + 0.610·37-s − 0.273·41-s + 1.33·43-s − 1.90·47-s − 0.669·49-s − 1.11·53-s − 0.425·55-s − 0.630·59-s − 0.0922·61-s − 0.679·65-s − 0.0824·67-s + 0.597·71-s + 0.850·73-s − 0.559·77-s − 0.277·79-s + 1.00·83-s + ⋯ |
Λ(s)=(=(324s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(324s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+4.89T+125T2 |
| 7 | 1+10.6T+343T2 |
| 11 | 1−35.4T+1.33e3T2 |
| 13 | 1−72.7T+2.19e3T2 |
| 17 | 1+127.T+4.91e3T2 |
| 19 | 1+46.3T+6.85e3T2 |
| 23 | 1+131.T+1.21e4T2 |
| 29 | 1+137.T+2.43e4T2 |
| 31 | 1+106.T+2.97e4T2 |
| 37 | 1−137.T+5.06e4T2 |
| 41 | 1+71.7T+6.89e4T2 |
| 43 | 1−376.T+7.95e4T2 |
| 47 | 1+613.T+1.03e5T2 |
| 53 | 1+431.T+1.48e5T2 |
| 59 | 1+285.T+2.05e5T2 |
| 61 | 1+43.9T+2.26e5T2 |
| 67 | 1+45.2T+3.00e5T2 |
| 71 | 1−357.T+3.57e5T2 |
| 73 | 1−530.T+3.89e5T2 |
| 79 | 1+195.T+4.93e5T2 |
| 83 | 1−760.T+5.71e5T2 |
| 89 | 1+1.21e3T+7.04e5T2 |
| 97 | 1+1.10e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02608164315251700458172723562, −9.640751371593460439974640225125, −8.872939536217413203682903037381, −7.955495241578396877950963273317, −6.59555773876972167411142405218, −6.07838104573034270751177817638, −4.30092263797932407365632121256, −3.59427183906464709241119251694, −1.82945016722240501372940533717, 0,
1.82945016722240501372940533717, 3.59427183906464709241119251694, 4.30092263797932407365632121256, 6.07838104573034270751177817638, 6.59555773876972167411142405218, 7.955495241578396877950963273317, 8.872939536217413203682903037381, 9.640751371593460439974640225125, 11.02608164315251700458172723562