Properties

Label 2-189-7.4-c3-0-31
Degree 22
Conductor 189189
Sign 0.917+0.396i-0.917 + 0.396i
Analytic cond. 11.151311.1513
Root an. cond. 3.339363.33936
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.884 + 1.53i)2-s + (2.43 − 4.21i)4-s + (−6.52 − 11.3i)5-s + (−18.4 − 0.966i)7-s + 22.7·8-s + (11.5 − 19.9i)10-s + (−26.4 + 45.8i)11-s − 71.7·13-s + (−14.8 − 29.1i)14-s + (0.663 + 1.14i)16-s + (−53.2 + 92.2i)17-s + (−26.9 − 46.7i)19-s − 63.5·20-s − 93.6·22-s + (−9.32 − 16.1i)23-s + ⋯
L(s)  = 1  + (0.312 + 0.541i)2-s + (0.304 − 0.527i)4-s + (−0.583 − 1.01i)5-s + (−0.998 − 0.0522i)7-s + 1.00·8-s + (0.365 − 0.632i)10-s + (−0.725 + 1.25i)11-s − 1.52·13-s + (−0.284 − 0.557i)14-s + (0.0103 + 0.0179i)16-s + (−0.760 + 1.31i)17-s + (−0.325 − 0.563i)19-s − 0.710·20-s − 0.907·22-s + (−0.0845 − 0.146i)23-s + ⋯

Functional equation

Λ(s)=(189s/2ΓC(s)L(s)=((0.917+0.396i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.917 + 0.396i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(189s/2ΓC(s+3/2)L(s)=((0.917+0.396i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.917 + 0.396i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 189189    =    3373^{3} \cdot 7
Sign: 0.917+0.396i-0.917 + 0.396i
Analytic conductor: 11.151311.1513
Root analytic conductor: 3.339363.33936
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ189(109,)\chi_{189} (109, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 189, ( :3/2), 0.917+0.396i)(2,\ 189,\ (\ :3/2),\ -0.917 + 0.396i)

Particular Values

L(2)L(2) \approx 0.07660410.370287i0.0766041 - 0.370287i
L(12)L(\frac12) \approx 0.07660410.370287i0.0766041 - 0.370287i
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1+(18.4+0.966i)T 1 + (18.4 + 0.966i)T
good2 1+(0.8841.53i)T+(4+6.92i)T2 1 + (-0.884 - 1.53i)T + (-4 + 6.92i)T^{2}
5 1+(6.52+11.3i)T+(62.5+108.i)T2 1 + (6.52 + 11.3i)T + (-62.5 + 108. i)T^{2}
11 1+(26.445.8i)T+(665.51.15e3i)T2 1 + (26.4 - 45.8i)T + (-665.5 - 1.15e3i)T^{2}
13 1+71.7T+2.19e3T2 1 + 71.7T + 2.19e3T^{2}
17 1+(53.292.2i)T+(2.45e34.25e3i)T2 1 + (53.2 - 92.2i)T + (-2.45e3 - 4.25e3i)T^{2}
19 1+(26.9+46.7i)T+(3.42e3+5.94e3i)T2 1 + (26.9 + 46.7i)T + (-3.42e3 + 5.94e3i)T^{2}
23 1+(9.32+16.1i)T+(6.08e3+1.05e4i)T2 1 + (9.32 + 16.1i)T + (-6.08e3 + 1.05e4i)T^{2}
29 1261.T+2.43e4T2 1 - 261.T + 2.43e4T^{2}
31 1+(61.1+105.i)T+(1.48e42.57e4i)T2 1 + (-61.1 + 105. i)T + (-1.48e4 - 2.57e4i)T^{2}
37 1+(139.+240.i)T+(2.53e4+4.38e4i)T2 1 + (139. + 240. i)T + (-2.53e4 + 4.38e4i)T^{2}
41 1+31.3T+6.89e4T2 1 + 31.3T + 6.89e4T^{2}
43 1+347.T+7.95e4T2 1 + 347.T + 7.95e4T^{2}
47 1+(271.+469.i)T+(5.19e4+8.99e4i)T2 1 + (271. + 469. i)T + (-5.19e4 + 8.99e4i)T^{2}
53 1+(128.+222.i)T+(7.44e41.28e5i)T2 1 + (-128. + 222. i)T + (-7.44e4 - 1.28e5i)T^{2}
59 1+(157.273.i)T+(1.02e51.77e5i)T2 1 + (157. - 273. i)T + (-1.02e5 - 1.77e5i)T^{2}
61 1+(69.4+120.i)T+(1.13e5+1.96e5i)T2 1 + (69.4 + 120. i)T + (-1.13e5 + 1.96e5i)T^{2}
67 1+(198.344.i)T+(1.50e52.60e5i)T2 1 + (198. - 344. i)T + (-1.50e5 - 2.60e5i)T^{2}
71 1+843.T+3.57e5T2 1 + 843.T + 3.57e5T^{2}
73 1+(436.+755.i)T+(1.94e53.36e5i)T2 1 + (-436. + 755. i)T + (-1.94e5 - 3.36e5i)T^{2}
79 1+(277.480.i)T+(2.46e5+4.26e5i)T2 1 + (-277. - 480. i)T + (-2.46e5 + 4.26e5i)T^{2}
83 1+297.T+5.71e5T2 1 + 297.T + 5.71e5T^{2}
89 1+(51.2+88.7i)T+(3.52e5+6.10e5i)T2 1 + (51.2 + 88.7i)T + (-3.52e5 + 6.10e5i)T^{2}
97 1+515.T+9.12e5T2 1 + 515.T + 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.03117790526865345270574285450, −10.43021214573361830256533125756, −9.855670987842234339027930140182, −8.512020916926113184814723248941, −7.33409423546335944296319309085, −6.50814090720511389805486470348, −5.06555736921552801193022990457, −4.38113608137037837158208576663, −2.21870132029935207926582761390, −0.13653547828827663157199457907, 2.81962157662477851083733532657, 3.11443697521656853295142199567, 4.74738847110645436140468926181, 6.53445561401830796139607866521, 7.28775059322326560208887257976, 8.358802285204833381904426191230, 9.928490817020079564447301034068, 10.72015124114656030898045870459, 11.65629299538665751281542355934, 12.33014701446284728240424902788

Graph of the ZZ-function along the critical line