L(s) = 1 | + (0.884 + 1.53i)2-s + (2.43 − 4.21i)4-s + (−6.52 − 11.3i)5-s + (−18.4 − 0.966i)7-s + 22.7·8-s + (11.5 − 19.9i)10-s + (−26.4 + 45.8i)11-s − 71.7·13-s + (−14.8 − 29.1i)14-s + (0.663 + 1.14i)16-s + (−53.2 + 92.2i)17-s + (−26.9 − 46.7i)19-s − 63.5·20-s − 93.6·22-s + (−9.32 − 16.1i)23-s + ⋯ |
L(s) = 1 | + (0.312 + 0.541i)2-s + (0.304 − 0.527i)4-s + (−0.583 − 1.01i)5-s + (−0.998 − 0.0522i)7-s + 1.00·8-s + (0.365 − 0.632i)10-s + (−0.725 + 1.25i)11-s − 1.52·13-s + (−0.284 − 0.557i)14-s + (0.0103 + 0.0179i)16-s + (−0.760 + 1.31i)17-s + (−0.325 − 0.563i)19-s − 0.710·20-s − 0.907·22-s + (−0.0845 − 0.146i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.917 + 0.396i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.917 + 0.396i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.0766041 - 0.370287i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0766041 - 0.370287i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (18.4 + 0.966i)T \) |
good | 2 | \( 1 + (-0.884 - 1.53i)T + (-4 + 6.92i)T^{2} \) |
| 5 | \( 1 + (6.52 + 11.3i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (26.4 - 45.8i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 71.7T + 2.19e3T^{2} \) |
| 17 | \( 1 + (53.2 - 92.2i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (26.9 + 46.7i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (9.32 + 16.1i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 261.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-61.1 + 105. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (139. + 240. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 31.3T + 6.89e4T^{2} \) |
| 43 | \( 1 + 347.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (271. + 469. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-128. + 222. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (157. - 273. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (69.4 + 120. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (198. - 344. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 843.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-436. + 755. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-277. - 480. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 297.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (51.2 + 88.7i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 515.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.03117790526865345270574285450, −10.43021214573361830256533125756, −9.855670987842234339027930140182, −8.512020916926113184814723248941, −7.33409423546335944296319309085, −6.50814090720511389805486470348, −5.06555736921552801193022990457, −4.38113608137037837158208576663, −2.21870132029935207926582761390, −0.13653547828827663157199457907,
2.81962157662477851083733532657, 3.11443697521656853295142199567, 4.74738847110645436140468926181, 6.53445561401830796139607866521, 7.28775059322326560208887257976, 8.358802285204833381904426191230, 9.928490817020079564447301034068, 10.72015124114656030898045870459, 11.65629299538665751281542355934, 12.33014701446284728240424902788