Properties

Label 2-189-7.4-c3-0-13
Degree 22
Conductor 189189
Sign 0.3900.920i-0.390 - 0.920i
Analytic cond. 11.151311.1513
Root an. cond. 3.339363.33936
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.64 + 2.85i)2-s + (−1.42 + 2.46i)4-s + (10.8 + 18.8i)5-s + (1.08 − 18.4i)7-s + 16.9·8-s + (−35.7 + 61.9i)10-s + (−20.9 + 36.3i)11-s + 46.0·13-s + (54.5 − 27.3i)14-s + (39.3 + 68.1i)16-s + (1.00 − 1.74i)17-s + (−36.6 − 63.4i)19-s − 61.7·20-s − 138.·22-s + (−12.0 − 20.9i)23-s + ⋯
L(s)  = 1  + (0.582 + 1.00i)2-s + (−0.177 + 0.307i)4-s + (0.971 + 1.68i)5-s + (0.0587 − 0.998i)7-s + 0.750·8-s + (−1.13 + 1.95i)10-s + (−0.575 + 0.996i)11-s + 0.982·13-s + (1.04 − 0.521i)14-s + (0.614 + 1.06i)16-s + (0.0143 − 0.0249i)17-s + (−0.442 − 0.765i)19-s − 0.690·20-s − 1.33·22-s + (−0.109 − 0.189i)23-s + ⋯

Functional equation

Λ(s)=(189s/2ΓC(s)L(s)=((0.3900.920i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.390 - 0.920i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(189s/2ΓC(s+3/2)L(s)=((0.3900.920i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.390 - 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 189189    =    3373^{3} \cdot 7
Sign: 0.3900.920i-0.390 - 0.920i
Analytic conductor: 11.151311.1513
Root analytic conductor: 3.339363.33936
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ189(109,)\chi_{189} (109, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 189, ( :3/2), 0.3900.920i)(2,\ 189,\ (\ :3/2),\ -0.390 - 0.920i)

Particular Values

L(2)L(2) \approx 1.61191+2.43543i1.61191 + 2.43543i
L(12)L(\frac12) \approx 1.61191+2.43543i1.61191 + 2.43543i
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1+(1.08+18.4i)T 1 + (-1.08 + 18.4i)T
good2 1+(1.642.85i)T+(4+6.92i)T2 1 + (-1.64 - 2.85i)T + (-4 + 6.92i)T^{2}
5 1+(10.818.8i)T+(62.5+108.i)T2 1 + (-10.8 - 18.8i)T + (-62.5 + 108. i)T^{2}
11 1+(20.936.3i)T+(665.51.15e3i)T2 1 + (20.9 - 36.3i)T + (-665.5 - 1.15e3i)T^{2}
13 146.0T+2.19e3T2 1 - 46.0T + 2.19e3T^{2}
17 1+(1.00+1.74i)T+(2.45e34.25e3i)T2 1 + (-1.00 + 1.74i)T + (-2.45e3 - 4.25e3i)T^{2}
19 1+(36.6+63.4i)T+(3.42e3+5.94e3i)T2 1 + (36.6 + 63.4i)T + (-3.42e3 + 5.94e3i)T^{2}
23 1+(12.0+20.9i)T+(6.08e3+1.05e4i)T2 1 + (12.0 + 20.9i)T + (-6.08e3 + 1.05e4i)T^{2}
29 1+90.7T+2.43e4T2 1 + 90.7T + 2.43e4T^{2}
31 1+(26.646.0i)T+(1.48e42.57e4i)T2 1 + (26.6 - 46.0i)T + (-1.48e4 - 2.57e4i)T^{2}
37 1+(33.9+58.7i)T+(2.53e4+4.38e4i)T2 1 + (33.9 + 58.7i)T + (-2.53e4 + 4.38e4i)T^{2}
41 1+341.T+6.89e4T2 1 + 341.T + 6.89e4T^{2}
43 1509.T+7.95e4T2 1 - 509.T + 7.95e4T^{2}
47 1+(19.233.3i)T+(5.19e4+8.99e4i)T2 1 + (-19.2 - 33.3i)T + (-5.19e4 + 8.99e4i)T^{2}
53 1+(194.+337.i)T+(7.44e41.28e5i)T2 1 + (-194. + 337. i)T + (-7.44e4 - 1.28e5i)T^{2}
59 1+(225.+390.i)T+(1.02e51.77e5i)T2 1 + (-225. + 390. i)T + (-1.02e5 - 1.77e5i)T^{2}
61 1+(112.+195.i)T+(1.13e5+1.96e5i)T2 1 + (112. + 195. i)T + (-1.13e5 + 1.96e5i)T^{2}
67 1+(386.+668.i)T+(1.50e52.60e5i)T2 1 + (-386. + 668. i)T + (-1.50e5 - 2.60e5i)T^{2}
71 1962.T+3.57e5T2 1 - 962.T + 3.57e5T^{2}
73 1+(526.+912.i)T+(1.94e53.36e5i)T2 1 + (-526. + 912. i)T + (-1.94e5 - 3.36e5i)T^{2}
79 1+(16.7+29.0i)T+(2.46e5+4.26e5i)T2 1 + (16.7 + 29.0i)T + (-2.46e5 + 4.26e5i)T^{2}
83 1+446.T+5.71e5T2 1 + 446.T + 5.71e5T^{2}
89 1+(244.424.i)T+(3.52e5+6.10e5i)T2 1 + (-244. - 424. i)T + (-3.52e5 + 6.10e5i)T^{2}
97 1460.T+9.12e5T2 1 - 460.T + 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.99533706810934044345771320377, −10.95175260533946955216196942357, −10.64688389287392793869866520073, −9.659705359884098091655228887057, −7.78314595729765964210155773229, −6.91640394367455827608764134946, −6.40958726670936811313925220147, −5.18204277843410194693642705519, −3.72550958859471944488408875859, −2.03516163479362097860128980115, 1.21734684374335654674535068697, 2.37387777120070897887747798619, 3.96687935494300154430483064295, 5.32087480781456467255366613973, 5.88148264887165944135521532748, 8.189507701983593713478633298312, 8.817762260113492249979880322250, 9.922742997312521327524901986688, 11.04422307749418819761644349102, 12.04412945231047885250578822936

Graph of the ZZ-function along the critical line