L(s) = 1 | + (1.64 + 2.85i)2-s + (−1.42 + 2.46i)4-s + (10.8 + 18.8i)5-s + (1.08 − 18.4i)7-s + 16.9·8-s + (−35.7 + 61.9i)10-s + (−20.9 + 36.3i)11-s + 46.0·13-s + (54.5 − 27.3i)14-s + (39.3 + 68.1i)16-s + (1.00 − 1.74i)17-s + (−36.6 − 63.4i)19-s − 61.7·20-s − 138.·22-s + (−12.0 − 20.9i)23-s + ⋯ |
L(s) = 1 | + (0.582 + 1.00i)2-s + (−0.177 + 0.307i)4-s + (0.971 + 1.68i)5-s + (0.0587 − 0.998i)7-s + 0.750·8-s + (−1.13 + 1.95i)10-s + (−0.575 + 0.996i)11-s + 0.982·13-s + (1.04 − 0.521i)14-s + (0.614 + 1.06i)16-s + (0.0143 − 0.0249i)17-s + (−0.442 − 0.765i)19-s − 0.690·20-s − 1.33·22-s + (−0.109 − 0.189i)23-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)(−0.390−0.920i)Λ(4−s)
Λ(s)=(=(189s/2ΓC(s+3/2)L(s)(−0.390−0.920i)Λ(1−s)
Degree: |
2 |
Conductor: |
189
= 33⋅7
|
Sign: |
−0.390−0.920i
|
Analytic conductor: |
11.1513 |
Root analytic conductor: |
3.33936 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 189, ( :3/2), −0.390−0.920i)
|
Particular Values
L(2) |
≈ |
1.61191+2.43543i |
L(21) |
≈ |
1.61191+2.43543i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−1.08+18.4i)T |
good | 2 | 1+(−1.64−2.85i)T+(−4+6.92i)T2 |
| 5 | 1+(−10.8−18.8i)T+(−62.5+108.i)T2 |
| 11 | 1+(20.9−36.3i)T+(−665.5−1.15e3i)T2 |
| 13 | 1−46.0T+2.19e3T2 |
| 17 | 1+(−1.00+1.74i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(36.6+63.4i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(12.0+20.9i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+90.7T+2.43e4T2 |
| 31 | 1+(26.6−46.0i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(33.9+58.7i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+341.T+6.89e4T2 |
| 43 | 1−509.T+7.95e4T2 |
| 47 | 1+(−19.2−33.3i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(−194.+337.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(−225.+390.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(112.+195.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(−386.+668.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1−962.T+3.57e5T2 |
| 73 | 1+(−526.+912.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(16.7+29.0i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+446.T+5.71e5T2 |
| 89 | 1+(−244.−424.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−460.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.99533706810934044345771320377, −10.95175260533946955216196942357, −10.64688389287392793869866520073, −9.659705359884098091655228887057, −7.78314595729765964210155773229, −6.91640394367455827608764134946, −6.40958726670936811313925220147, −5.18204277843410194693642705519, −3.72550958859471944488408875859, −2.03516163479362097860128980115,
1.21734684374335654674535068697, 2.37387777120070897887747798619, 3.96687935494300154430483064295, 5.32087480781456467255366613973, 5.88148264887165944135521532748, 8.189507701983593713478633298312, 8.817762260113492249979880322250, 9.922742997312521327524901986688, 11.04422307749418819761644349102, 12.04412945231047885250578822936