Properties

Label 2-189-7.2-c3-0-31
Degree 22
Conductor 189189
Sign 0.5500.834i-0.550 - 0.834i
Analytic cond. 11.151311.1513
Root an. cond. 3.339363.33936
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.73 − 4.73i)2-s + (−10.9 − 18.9i)4-s + (0.0995 − 0.172i)5-s + (−16.0 − 9.31i)7-s − 75.5·8-s + (−0.543 − 0.941i)10-s + (14.2 + 24.6i)11-s + 32.5·13-s + (−87.7 + 50.2i)14-s + (−118. + 206. i)16-s + (−57.7 − 100. i)17-s + (−10.5 + 18.3i)19-s − 4.34·20-s + 155.·22-s + (46.8 − 81.2i)23-s + ⋯
L(s)  = 1  + (0.965 − 1.67i)2-s + (−1.36 − 2.36i)4-s + (0.00890 − 0.0154i)5-s + (−0.864 − 0.503i)7-s − 3.33·8-s + (−0.0171 − 0.0297i)10-s + (0.389 + 0.674i)11-s + 0.695·13-s + (−1.67 + 0.959i)14-s + (−1.85 + 3.21i)16-s + (−0.823 − 1.42i)17-s + (−0.127 + 0.221i)19-s − 0.0486·20-s + 1.50·22-s + (0.425 − 0.736i)23-s + ⋯

Functional equation

Λ(s)=(189s/2ΓC(s)L(s)=((0.5500.834i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.550 - 0.834i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(189s/2ΓC(s+3/2)L(s)=((0.5500.834i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.550 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 189189    =    3373^{3} \cdot 7
Sign: 0.5500.834i-0.550 - 0.834i
Analytic conductor: 11.151311.1513
Root analytic conductor: 3.339363.33936
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ189(163,)\chi_{189} (163, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 189, ( :3/2), 0.5500.834i)(2,\ 189,\ (\ :3/2),\ -0.550 - 0.834i)

Particular Values

L(2)L(2) \approx 0.801352+1.48915i0.801352 + 1.48915i
L(12)L(\frac12) \approx 0.801352+1.48915i0.801352 + 1.48915i
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1+(16.0+9.31i)T 1 + (16.0 + 9.31i)T
good2 1+(2.73+4.73i)T+(46.92i)T2 1 + (-2.73 + 4.73i)T + (-4 - 6.92i)T^{2}
5 1+(0.0995+0.172i)T+(62.5108.i)T2 1 + (-0.0995 + 0.172i)T + (-62.5 - 108. i)T^{2}
11 1+(14.224.6i)T+(665.5+1.15e3i)T2 1 + (-14.2 - 24.6i)T + (-665.5 + 1.15e3i)T^{2}
13 132.5T+2.19e3T2 1 - 32.5T + 2.19e3T^{2}
17 1+(57.7+100.i)T+(2.45e3+4.25e3i)T2 1 + (57.7 + 100. i)T + (-2.45e3 + 4.25e3i)T^{2}
19 1+(10.518.3i)T+(3.42e35.94e3i)T2 1 + (10.5 - 18.3i)T + (-3.42e3 - 5.94e3i)T^{2}
23 1+(46.8+81.2i)T+(6.08e31.05e4i)T2 1 + (-46.8 + 81.2i)T + (-6.08e3 - 1.05e4i)T^{2}
29 1+231.T+2.43e4T2 1 + 231.T + 2.43e4T^{2}
31 1+(140.+243.i)T+(1.48e4+2.57e4i)T2 1 + (140. + 243. i)T + (-1.48e4 + 2.57e4i)T^{2}
37 1+(73.2+126.i)T+(2.53e44.38e4i)T2 1 + (-73.2 + 126. i)T + (-2.53e4 - 4.38e4i)T^{2}
41 1111.T+6.89e4T2 1 - 111.T + 6.89e4T^{2}
43 1392.T+7.95e4T2 1 - 392.T + 7.95e4T^{2}
47 1+(136.+236.i)T+(5.19e48.99e4i)T2 1 + (-136. + 236. i)T + (-5.19e4 - 8.99e4i)T^{2}
53 1+(170.+294.i)T+(7.44e4+1.28e5i)T2 1 + (170. + 294. i)T + (-7.44e4 + 1.28e5i)T^{2}
59 1+(348.+603.i)T+(1.02e5+1.77e5i)T2 1 + (348. + 603. i)T + (-1.02e5 + 1.77e5i)T^{2}
61 1+(185.+320.i)T+(1.13e51.96e5i)T2 1 + (-185. + 320. i)T + (-1.13e5 - 1.96e5i)T^{2}
67 1+(43.5+75.4i)T+(1.50e5+2.60e5i)T2 1 + (43.5 + 75.4i)T + (-1.50e5 + 2.60e5i)T^{2}
71 188.3T+3.57e5T2 1 - 88.3T + 3.57e5T^{2}
73 1+(401.695.i)T+(1.94e5+3.36e5i)T2 1 + (-401. - 695. i)T + (-1.94e5 + 3.36e5i)T^{2}
79 1+(182.315.i)T+(2.46e54.26e5i)T2 1 + (182. - 315. i)T + (-2.46e5 - 4.26e5i)T^{2}
83 1+921.T+5.71e5T2 1 + 921.T + 5.71e5T^{2}
89 1+(105.183.i)T+(3.52e56.10e5i)T2 1 + (105. - 183. i)T + (-3.52e5 - 6.10e5i)T^{2}
97 1845.T+9.12e5T2 1 - 845.T + 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.33985291212287500990024800494, −10.91214088761254993040081533127, −9.594739068051937644338758278284, −9.225184162316953500330907099064, −6.99595800971150838431285950785, −5.72086715775267218234658736742, −4.42673692821513344861657515633, −3.52217803080998295577186959819, −2.20020838318055760737312767104, −0.54102078373035419820936887699, 3.22755874584627103530527762770, 4.23528249259268308258170877289, 5.77382350189906130637586280122, 6.24497476392337046211159272760, 7.31376910940433603597690491136, 8.629163887843692456864901078547, 9.090915533305979560240234662751, 10.98097827261234000268232195051, 12.38937996825872917402450390221, 12.99845167477971908771356115500

Graph of the ZZ-function along the critical line