L(s) = 1 | + (2.73 − 4.73i)2-s + (−10.9 − 18.9i)4-s + (0.0995 − 0.172i)5-s + (−16.0 − 9.31i)7-s − 75.5·8-s + (−0.543 − 0.941i)10-s + (14.2 + 24.6i)11-s + 32.5·13-s + (−87.7 + 50.2i)14-s + (−118. + 206. i)16-s + (−57.7 − 100. i)17-s + (−10.5 + 18.3i)19-s − 4.34·20-s + 155.·22-s + (46.8 − 81.2i)23-s + ⋯ |
L(s) = 1 | + (0.965 − 1.67i)2-s + (−1.36 − 2.36i)4-s + (0.00890 − 0.0154i)5-s + (−0.864 − 0.503i)7-s − 3.33·8-s + (−0.0171 − 0.0297i)10-s + (0.389 + 0.674i)11-s + 0.695·13-s + (−1.67 + 0.959i)14-s + (−1.85 + 3.21i)16-s + (−0.823 − 1.42i)17-s + (−0.127 + 0.221i)19-s − 0.0486·20-s + 1.50·22-s + (0.425 − 0.736i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.550 - 0.834i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.550 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.801352 + 1.48915i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.801352 + 1.48915i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (16.0 + 9.31i)T \) |
good | 2 | \( 1 + (-2.73 + 4.73i)T + (-4 - 6.92i)T^{2} \) |
| 5 | \( 1 + (-0.0995 + 0.172i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-14.2 - 24.6i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 32.5T + 2.19e3T^{2} \) |
| 17 | \( 1 + (57.7 + 100. i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (10.5 - 18.3i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-46.8 + 81.2i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 231.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (140. + 243. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-73.2 + 126. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 111.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 392.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-136. + 236. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (170. + 294. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (348. + 603. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-185. + 320. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (43.5 + 75.4i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 88.3T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-401. - 695. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (182. - 315. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 921.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (105. - 183. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 845.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.33985291212287500990024800494, −10.91214088761254993040081533127, −9.594739068051937644338758278284, −9.225184162316953500330907099064, −6.99595800971150838431285950785, −5.72086715775267218234658736742, −4.42673692821513344861657515633, −3.52217803080998295577186959819, −2.20020838318055760737312767104, −0.54102078373035419820936887699,
3.22755874584627103530527762770, 4.23528249259268308258170877289, 5.77382350189906130637586280122, 6.24497476392337046211159272760, 7.31376910940433603597690491136, 8.629163887843692456864901078547, 9.090915533305979560240234662751, 10.98097827261234000268232195051, 12.38937996825872917402450390221, 12.99845167477971908771356115500