L(s) = 1 | + (−1.74 + 3.02i)2-s + (−2.09 − 3.63i)4-s + (3.93 − 6.82i)5-s + (18.4 + 1.98i)7-s − 13.2·8-s + (13.7 + 23.8i)10-s + (−27.0 − 46.7i)11-s − 48.9·13-s + (−38.1 + 52.2i)14-s + (39.9 − 69.2i)16-s + (−48.4 − 83.9i)17-s + (71.1 − 123. i)19-s − 33.0·20-s + 188.·22-s + (−51.8 + 89.8i)23-s + ⋯ |
L(s) = 1 | + (−0.617 + 1.06i)2-s + (−0.262 − 0.454i)4-s + (0.352 − 0.610i)5-s + (0.994 + 0.107i)7-s − 0.587·8-s + (0.434 + 0.753i)10-s + (−0.740 − 1.28i)11-s − 1.04·13-s + (−0.728 + 0.996i)14-s + (0.624 − 1.08i)16-s + (−0.691 − 1.19i)17-s + (0.859 − 1.48i)19-s − 0.369·20-s + 1.82·22-s + (−0.470 + 0.814i)23-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)(0.843+0.537i)Λ(4−s)
Λ(s)=(=(189s/2ΓC(s+3/2)L(s)(0.843+0.537i)Λ(1−s)
Degree: |
2 |
Conductor: |
189
= 33⋅7
|
Sign: |
0.843+0.537i
|
Analytic conductor: |
11.1513 |
Root analytic conductor: |
3.33936 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(163,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 189, ( :3/2), 0.843+0.537i)
|
Particular Values
L(2) |
≈ |
0.917785−0.267728i |
L(21) |
≈ |
0.917785−0.267728i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−18.4−1.98i)T |
good | 2 | 1+(1.74−3.02i)T+(−4−6.92i)T2 |
| 5 | 1+(−3.93+6.82i)T+(−62.5−108.i)T2 |
| 11 | 1+(27.0+46.7i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+48.9T+2.19e3T2 |
| 17 | 1+(48.4+83.9i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(−71.1+123.i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(51.8−89.8i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1−24.5T+2.43e4T2 |
| 31 | 1+(93.6+162.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(73.2−126.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1−314.T+6.89e4T2 |
| 43 | 1−173.T+7.95e4T2 |
| 47 | 1+(−129.+224.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(310.+537.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(−221.−383.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(56.6−98.1i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(314.+544.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−41.3T+3.57e5T2 |
| 73 | 1+(223.+387.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(217.−376.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+329.T+5.71e5T2 |
| 89 | 1+(−12.4+21.5i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+499.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.84160198059153840577980385550, −11.12512942344965713802264789007, −9.501810281770336789332618451345, −8.908591262799585855045905838991, −7.86424267775512136303932295376, −7.14363505408832916263204057777, −5.60490276054673422627694834325, −4.97423309235453334017292077473, −2.69988384861738168456504506030, −0.50359374107528565397000989736,
1.69107666540644438352241199727, 2.56285346623447984618753019981, 4.35322549215037207751689119614, 5.80685679639848075038461250636, 7.29042880421455211539452902099, 8.302064542026628809184483041727, 9.609574435011028436742553354797, 10.41978712387078528048406123747, 10.83676558361308689762721642861, 12.22455516274871071659851517958