L(s) = 1 | + (−1.74 + 3.02i)2-s + (−2.09 − 3.63i)4-s + (3.93 − 6.82i)5-s + (18.4 + 1.98i)7-s − 13.2·8-s + (13.7 + 23.8i)10-s + (−27.0 − 46.7i)11-s − 48.9·13-s + (−38.1 + 52.2i)14-s + (39.9 − 69.2i)16-s + (−48.4 − 83.9i)17-s + (71.1 − 123. i)19-s − 33.0·20-s + 188.·22-s + (−51.8 + 89.8i)23-s + ⋯ |
L(s) = 1 | + (−0.617 + 1.06i)2-s + (−0.262 − 0.454i)4-s + (0.352 − 0.610i)5-s + (0.994 + 0.107i)7-s − 0.587·8-s + (0.434 + 0.753i)10-s + (−0.740 − 1.28i)11-s − 1.04·13-s + (−0.728 + 0.996i)14-s + (0.624 − 1.08i)16-s + (−0.691 − 1.19i)17-s + (0.859 − 1.48i)19-s − 0.369·20-s + 1.82·22-s + (−0.470 + 0.814i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.843 + 0.537i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.843 + 0.537i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.917785 - 0.267728i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.917785 - 0.267728i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-18.4 - 1.98i)T \) |
good | 2 | \( 1 + (1.74 - 3.02i)T + (-4 - 6.92i)T^{2} \) |
| 5 | \( 1 + (-3.93 + 6.82i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (27.0 + 46.7i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 48.9T + 2.19e3T^{2} \) |
| 17 | \( 1 + (48.4 + 83.9i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-71.1 + 123. i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (51.8 - 89.8i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 24.5T + 2.43e4T^{2} \) |
| 31 | \( 1 + (93.6 + 162. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (73.2 - 126. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 314.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 173.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-129. + 224. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (310. + 537. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-221. - 383. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (56.6 - 98.1i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (314. + 544. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 41.3T + 3.57e5T^{2} \) |
| 73 | \( 1 + (223. + 387. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (217. - 376. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 329.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-12.4 + 21.5i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 499.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.84160198059153840577980385550, −11.12512942344965713802264789007, −9.501810281770336789332618451345, −8.908591262799585855045905838991, −7.86424267775512136303932295376, −7.14363505408832916263204057777, −5.60490276054673422627694834325, −4.97423309235453334017292077473, −2.69988384861738168456504506030, −0.50359374107528565397000989736,
1.69107666540644438352241199727, 2.56285346623447984618753019981, 4.35322549215037207751689119614, 5.80685679639848075038461250636, 7.29042880421455211539452902099, 8.302064542026628809184483041727, 9.609574435011028436742553354797, 10.41978712387078528048406123747, 10.83676558361308689762721642861, 12.22455516274871071659851517958