Properties

Label 2-189-21.20-c1-0-7
Degree 22
Conductor 189189
Sign 0.377+0.925i-0.377 + 0.925i
Analytic cond. 1.509171.50917
Root an. cond. 1.228481.22848
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·2-s − 1.73·5-s + (1 − 2.44i)7-s − 2.82i·8-s + 2.44i·10-s − 1.41i·11-s − 2.44i·13-s + (−3.46 − 1.41i)14-s − 4.00·16-s + 5.19·17-s + 7.34i·19-s − 2.00·22-s + 2.82i·23-s − 2.00·25-s − 3.46·26-s + ⋯
L(s)  = 1  − 0.999i·2-s − 0.774·5-s + (0.377 − 0.925i)7-s − 0.999i·8-s + 0.774i·10-s − 0.426i·11-s − 0.679i·13-s + (−0.925 − 0.377i)14-s − 1.00·16-s + 1.26·17-s + 1.68i·19-s − 0.426·22-s + 0.589i·23-s − 0.400·25-s − 0.679·26-s + ⋯

Functional equation

Λ(s)=(189s/2ΓC(s)L(s)=((0.377+0.925i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.377 + 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(189s/2ΓC(s+1/2)L(s)=((0.377+0.925i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.377 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 189189    =    3373^{3} \cdot 7
Sign: 0.377+0.925i-0.377 + 0.925i
Analytic conductor: 1.509171.50917
Root analytic conductor: 1.228481.22848
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ189(188,)\chi_{189} (188, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 189, ( :1/2), 0.377+0.925i)(2,\ 189,\ (\ :1/2),\ -0.377 + 0.925i)

Particular Values

L(1)L(1) \approx 0.6583580.979882i0.658358 - 0.979882i
L(12)L(\frac12) \approx 0.6583580.979882i0.658358 - 0.979882i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1+(1+2.44i)T 1 + (-1 + 2.44i)T
good2 1+1.41iT2T2 1 + 1.41iT - 2T^{2}
5 1+1.73T+5T2 1 + 1.73T + 5T^{2}
11 1+1.41iT11T2 1 + 1.41iT - 11T^{2}
13 1+2.44iT13T2 1 + 2.44iT - 13T^{2}
17 15.19T+17T2 1 - 5.19T + 17T^{2}
19 17.34iT19T2 1 - 7.34iT - 19T^{2}
23 12.82iT23T2 1 - 2.82iT - 23T^{2}
29 17.07iT29T2 1 - 7.07iT - 29T^{2}
31 1+2.44iT31T2 1 + 2.44iT - 31T^{2}
37 15T+37T2 1 - 5T + 37T^{2}
41 18.66T+41T2 1 - 8.66T + 41T^{2}
43 15T+43T2 1 - 5T + 43T^{2}
47 1+8.66T+47T2 1 + 8.66T + 47T^{2}
53 111.3iT53T2 1 - 11.3iT - 53T^{2}
59 18.66T+59T2 1 - 8.66T + 59T^{2}
61 12.44iT61T2 1 - 2.44iT - 61T^{2}
67 12T+67T2 1 - 2T + 67T^{2}
71 1+14.1iT71T2 1 + 14.1iT - 71T^{2}
73 173T2 1 - 73T^{2}
79 1+13T+79T2 1 + 13T + 79T^{2}
83 11.73T+83T2 1 - 1.73T + 83T^{2}
89 1+10.3T+89T2 1 + 10.3T + 89T^{2}
97 117.1iT97T2 1 - 17.1iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.13141041694563760704111852812, −11.25401025099405174551874117609, −10.52010450562826378801543801606, −9.700248769112340950507436858839, −8.006987996081415846114091344901, −7.42781759225687197034043682863, −5.81826367315714878428283556666, −4.06322499893154788370364151799, −3.26072537580287945895711806105, −1.21390625503354902557172281617, 2.50285706865570168890423261532, 4.47567587387250422591413427531, 5.60233471199409282489903453001, 6.75682140315435819717536517767, 7.72969249655452372306215068052, 8.507092058131594793711533661069, 9.639994425197906743321190836037, 11.33486793844748845137857339627, 11.67120188013919176218549325931, 12.83217219130144172886084074141

Graph of the ZZ-function along the critical line