L(s) = 1 | + (1.95 − 0.345i)2-s + (−1.39 + 1.02i)3-s + (1.83 − 0.667i)4-s + (−0.649 + 3.68i)5-s + (−2.37 + 2.49i)6-s + (2.58 − 0.552i)7-s + (−0.0842 + 0.0486i)8-s + (0.891 − 2.86i)9-s + 7.43i·10-s + (0.526 − 0.0928i)11-s + (−1.87 + 2.81i)12-s + (3.22 − 3.84i)13-s + (4.87 − 1.97i)14-s + (−2.87 − 5.80i)15-s + (−3.13 + 2.63i)16-s − 4.53·17-s + ⋯ |
L(s) = 1 | + (1.38 − 0.244i)2-s + (−0.805 + 0.592i)3-s + (0.916 − 0.333i)4-s + (−0.290 + 1.64i)5-s + (−0.970 + 1.01i)6-s + (0.977 − 0.208i)7-s + (−0.0297 + 0.0171i)8-s + (0.297 − 0.954i)9-s + 2.35i·10-s + (0.158 − 0.0280i)11-s + (−0.540 + 0.812i)12-s + (0.894 − 1.06i)13-s + (1.30 − 0.527i)14-s + (−0.742 − 1.49i)15-s + (−0.784 + 0.658i)16-s − 1.10·17-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)(0.679−0.733i)Λ(2−s)
Λ(s)=(=(189s/2ΓC(s+1/2)L(s)(0.679−0.733i)Λ(1−s)
Degree: |
2 |
Conductor: |
189
= 33⋅7
|
Sign: |
0.679−0.733i
|
Analytic conductor: |
1.50917 |
Root analytic conductor: |
1.22848 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 189, ( :1/2), 0.679−0.733i)
|
Particular Values
L(1) |
≈ |
1.67845+0.733119i |
L(21) |
≈ |
1.67845+0.733119i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.39−1.02i)T |
| 7 | 1+(−2.58+0.552i)T |
good | 2 | 1+(−1.95+0.345i)T+(1.87−0.684i)T2 |
| 5 | 1+(0.649−3.68i)T+(−4.69−1.71i)T2 |
| 11 | 1+(−0.526+0.0928i)T+(10.3−3.76i)T2 |
| 13 | 1+(−3.22+3.84i)T+(−2.25−12.8i)T2 |
| 17 | 1+4.53T+17T2 |
| 19 | 1+1.20iT−19T2 |
| 23 | 1+(−5.35+6.37i)T+(−3.99−22.6i)T2 |
| 29 | 1+(−2.30−2.75i)T+(−5.03+28.5i)T2 |
| 31 | 1+(0.0334+0.0920i)T+(−23.7+19.9i)T2 |
| 37 | 1+(0.267+0.463i)T+(−18.5+32.0i)T2 |
| 41 | 1+(5.79+4.85i)T+(7.11+40.3i)T2 |
| 43 | 1+(0.0316+0.0115i)T+(32.9+27.6i)T2 |
| 47 | 1+(−5.19−1.88i)T+(36.0+30.2i)T2 |
| 53 | 1+(8.57−4.95i)T+(26.5−45.8i)T2 |
| 59 | 1+(−0.583−0.489i)T+(10.2+58.1i)T2 |
| 61 | 1+(−2.21+6.08i)T+(−46.7−39.2i)T2 |
| 67 | 1+(1.14−6.48i)T+(−62.9−22.9i)T2 |
| 71 | 1+(−3.13−1.80i)T+(35.5+61.4i)T2 |
| 73 | 1+(5.76+3.32i)T+(36.5+63.2i)T2 |
| 79 | 1+(0.909+5.15i)T+(−74.2+27.0i)T2 |
| 83 | 1+(1.39−1.16i)T+(14.4−81.7i)T2 |
| 89 | 1+9.21T+89T2 |
| 97 | 1+(4.37−12.0i)T+(−74.3−62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.64002798308935370244369479492, −11.55347890219902373874552343884, −10.84718758816533908074842536149, −10.62996727545444563232872481578, −8.668080393374953276293076636931, −6.99196275252002892636718298302, −6.19536102595189021127701849736, −5.00537260043365436046636038293, −3.97269548795570768099179771681, −2.87481072522384202088931738819,
1.54346126567714391196270670820, 4.22314541514449113764600441404, 4.88216914289051433189769410904, 5.72931026493107742735202246866, 6.89666078928681928103056481542, 8.262792134062950332870449504144, 9.194810595198723040598192455965, 11.32954548052963590393516753629, 11.65917607017913961268209899644, 12.57346584960623238992983206248