L(s) = 1 | + 1.26·2-s − 6.39·4-s − 3.92·5-s + 7·7-s − 18.2·8-s − 4.98·10-s + 51.7·11-s + 67.5·13-s + 8.87·14-s + 27.9·16-s + 63.4·17-s − 71.9·19-s + 25.1·20-s + 65.5·22-s + 147.·23-s − 109.·25-s + 85.6·26-s − 44.7·28-s + 117.·29-s + 54.7·31-s + 181.·32-s + 80.5·34-s − 27.4·35-s + 9.70·37-s − 91.1·38-s + 71.6·40-s − 236.·41-s + ⋯ |
L(s) = 1 | + 0.448·2-s − 0.799·4-s − 0.351·5-s + 0.377·7-s − 0.806·8-s − 0.157·10-s + 1.41·11-s + 1.44·13-s + 0.169·14-s + 0.437·16-s + 0.905·17-s − 0.868·19-s + 0.280·20-s + 0.635·22-s + 1.33·23-s − 0.876·25-s + 0.646·26-s − 0.302·28-s + 0.753·29-s + 0.316·31-s + 1.00·32-s + 0.406·34-s − 0.132·35-s + 0.0431·37-s − 0.389·38-s + 0.283·40-s − 0.900·41-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(189s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.890009273 |
L(21) |
≈ |
1.890009273 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
good | 2 | 1−1.26T+8T2 |
| 5 | 1+3.92T+125T2 |
| 11 | 1−51.7T+1.33e3T2 |
| 13 | 1−67.5T+2.19e3T2 |
| 17 | 1−63.4T+4.91e3T2 |
| 19 | 1+71.9T+6.85e3T2 |
| 23 | 1−147.T+1.21e4T2 |
| 29 | 1−117.T+2.43e4T2 |
| 31 | 1−54.7T+2.97e4T2 |
| 37 | 1−9.70T+5.06e4T2 |
| 41 | 1+236.T+6.89e4T2 |
| 43 | 1+489.T+7.95e4T2 |
| 47 | 1−613.T+1.03e5T2 |
| 53 | 1−316.T+1.48e5T2 |
| 59 | 1−2.43T+2.05e5T2 |
| 61 | 1−482.T+2.26e5T2 |
| 67 | 1−646.T+3.00e5T2 |
| 71 | 1+459.T+3.57e5T2 |
| 73 | 1−137.T+3.89e5T2 |
| 79 | 1+816.T+4.93e5T2 |
| 83 | 1+1.00e3T+5.71e5T2 |
| 89 | 1+255.T+7.04e5T2 |
| 97 | 1+62.9T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.11050418120095162927090243564, −11.38877843987926079005848866597, −10.11273323659505284049996330443, −8.883230783940692852695745409819, −8.342258761951479821104636953239, −6.73961172359149170084649142515, −5.62749816620686311188033767704, −4.30097411355325161304113297813, −3.48890578831053268065585151651, −1.10424273914690404018298632997,
1.10424273914690404018298632997, 3.48890578831053268065585151651, 4.30097411355325161304113297813, 5.62749816620686311188033767704, 6.73961172359149170084649142515, 8.342258761951479821104636953239, 8.883230783940692852695745409819, 10.11273323659505284049996330443, 11.38877843987926079005848866597, 12.11050418120095162927090243564