L(s) = 1 | + 4.73·2-s + 14.3·4-s + 9.92·5-s + 7·7-s + 30.2·8-s + 46.9·10-s − 3.71·11-s − 15.5·13-s + 33.1·14-s + 28.0·16-s − 33.4·17-s + 135.·19-s + 142.·20-s − 17.5·22-s − 87.7·23-s − 26.4·25-s − 73.6·26-s + 100.·28-s + 242.·29-s − 194.·31-s − 109.·32-s − 158.·34-s + 69.4·35-s − 239.·37-s + 643.·38-s + 300.·40-s + 470.·41-s + ⋯ |
L(s) = 1 | + 1.67·2-s + 1.79·4-s + 0.888·5-s + 0.377·7-s + 1.33·8-s + 1.48·10-s − 0.101·11-s − 0.332·13-s + 0.632·14-s + 0.437·16-s − 0.477·17-s + 1.64·19-s + 1.59·20-s − 0.170·22-s − 0.795·23-s − 0.211·25-s − 0.555·26-s + 0.679·28-s + 1.55·29-s − 1.12·31-s − 0.604·32-s − 0.799·34-s + 0.335·35-s − 1.06·37-s + 2.74·38-s + 1.18·40-s + 1.79·41-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(189s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
4.961205230 |
L(21) |
≈ |
4.961205230 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
good | 2 | 1−4.73T+8T2 |
| 5 | 1−9.92T+125T2 |
| 11 | 1+3.71T+1.33e3T2 |
| 13 | 1+15.5T+2.19e3T2 |
| 17 | 1+33.4T+4.91e3T2 |
| 19 | 1−135.T+6.85e3T2 |
| 23 | 1+87.7T+1.21e4T2 |
| 29 | 1−242.T+2.43e4T2 |
| 31 | 1+194.T+2.97e4T2 |
| 37 | 1+239.T+5.06e4T2 |
| 41 | 1−470.T+6.89e4T2 |
| 43 | 1+448.T+7.95e4T2 |
| 47 | 1−4.15T+1.03e5T2 |
| 53 | 1+736.T+1.48e5T2 |
| 59 | 1−279.T+2.05e5T2 |
| 61 | 1+514.T+2.26e5T2 |
| 67 | 1+102.T+3.00e5T2 |
| 71 | 1+44.1T+3.57e5T2 |
| 73 | 1+901.T+3.89e5T2 |
| 79 | 1−1.05e3T+4.93e5T2 |
| 83 | 1−487.T+5.71e5T2 |
| 89 | 1−963.T+7.04e5T2 |
| 97 | 1−726.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.27632987659299655646781178799, −11.53596273464521670832837473914, −10.39527046502980608642461348633, −9.265470538002553362706371216565, −7.64659685835112797103145769696, −6.44846109697459173396428217355, −5.51343900559437254962157215947, −4.66444943384070729710683771265, −3.22541706504688024702033440526, −1.92515513340998566052728157358,
1.92515513340998566052728157358, 3.22541706504688024702033440526, 4.66444943384070729710683771265, 5.51343900559437254962157215947, 6.44846109697459173396428217355, 7.64659685835112797103145769696, 9.265470538002553362706371216565, 10.39527046502980608642461348633, 11.53596273464521670832837473914, 12.27632987659299655646781178799