L(s) = 1 | − 1.35·2-s − 3-s − 0.175·4-s + 1.35·6-s + 1.59·7-s + 2.93·8-s + 9-s + 3.33·11-s + 0.175·12-s + 7.05·13-s − 2.15·14-s − 3.61·16-s + 4.09·17-s − 1.35·18-s + 0.567·19-s − 1.59·21-s − 4.50·22-s + 6.30·23-s − 2.93·24-s − 9.52·26-s − 27-s − 0.279·28-s − 2.78·29-s − 0.995·31-s − 0.988·32-s − 3.33·33-s − 5.53·34-s + ⋯ |
L(s) = 1 | − 0.955·2-s − 0.577·3-s − 0.0876·4-s + 0.551·6-s + 0.603·7-s + 1.03·8-s + 0.333·9-s + 1.00·11-s + 0.0505·12-s + 1.95·13-s − 0.576·14-s − 0.904·16-s + 0.993·17-s − 0.318·18-s + 0.130·19-s − 0.348·21-s − 0.959·22-s + 1.31·23-s − 0.599·24-s − 1.86·26-s − 0.192·27-s − 0.0528·28-s − 0.516·29-s − 0.178·31-s − 0.174·32-s − 0.580·33-s − 0.948·34-s + ⋯ |
Λ(s)=(=(1875s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1875s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.083115349 |
L(21) |
≈ |
1.083115349 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
good | 2 | 1+1.35T+2T2 |
| 7 | 1−1.59T+7T2 |
| 11 | 1−3.33T+11T2 |
| 13 | 1−7.05T+13T2 |
| 17 | 1−4.09T+17T2 |
| 19 | 1−0.567T+19T2 |
| 23 | 1−6.30T+23T2 |
| 29 | 1+2.78T+29T2 |
| 31 | 1+0.995T+31T2 |
| 37 | 1+3.55T+37T2 |
| 41 | 1−1.16T+41T2 |
| 43 | 1−0.117T+43T2 |
| 47 | 1−7.64T+47T2 |
| 53 | 1−0.523T+53T2 |
| 59 | 1−0.983T+59T2 |
| 61 | 1−10.6T+61T2 |
| 67 | 1+15.2T+67T2 |
| 71 | 1+10.6T+71T2 |
| 73 | 1−5.55T+73T2 |
| 79 | 1+14.5T+79T2 |
| 83 | 1−5.02T+83T2 |
| 89 | 1−2.82T+89T2 |
| 97 | 1+1.70T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.974202738068428167742934981653, −8.738805915098542627708178618202, −7.76025972263796058152352709409, −7.03923523733820074434378734471, −6.08358302792928319859791001929, −5.27690454012064343135306359959, −4.27464149691434021308747497577, −3.47464187506563361008315325574, −1.53941946295797567691624508938, −0.987353738408260084385826513754,
0.987353738408260084385826513754, 1.53941946295797567691624508938, 3.47464187506563361008315325574, 4.27464149691434021308747497577, 5.27690454012064343135306359959, 6.08358302792928319859791001929, 7.03923523733820074434378734471, 7.76025972263796058152352709409, 8.738805915098542627708178618202, 8.974202738068428167742934981653