Properties

Label 2-1875-1.1-c1-0-28
Degree $2$
Conductor $1875$
Sign $1$
Analytic cond. $14.9719$
Root an. cond. $3.86936$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.35·2-s − 3-s − 0.175·4-s + 1.35·6-s + 1.59·7-s + 2.93·8-s + 9-s + 3.33·11-s + 0.175·12-s + 7.05·13-s − 2.15·14-s − 3.61·16-s + 4.09·17-s − 1.35·18-s + 0.567·19-s − 1.59·21-s − 4.50·22-s + 6.30·23-s − 2.93·24-s − 9.52·26-s − 27-s − 0.279·28-s − 2.78·29-s − 0.995·31-s − 0.988·32-s − 3.33·33-s − 5.53·34-s + ⋯
L(s)  = 1  − 0.955·2-s − 0.577·3-s − 0.0876·4-s + 0.551·6-s + 0.603·7-s + 1.03·8-s + 0.333·9-s + 1.00·11-s + 0.0505·12-s + 1.95·13-s − 0.576·14-s − 0.904·16-s + 0.993·17-s − 0.318·18-s + 0.130·19-s − 0.348·21-s − 0.959·22-s + 1.31·23-s − 0.599·24-s − 1.86·26-s − 0.192·27-s − 0.0528·28-s − 0.516·29-s − 0.178·31-s − 0.174·32-s − 0.580·33-s − 0.948·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1875\)    =    \(3 \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(14.9719\)
Root analytic conductor: \(3.86936\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1875,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.083115349\)
\(L(\frac12)\) \(\approx\) \(1.083115349\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
good2 \( 1 + 1.35T + 2T^{2} \)
7 \( 1 - 1.59T + 7T^{2} \)
11 \( 1 - 3.33T + 11T^{2} \)
13 \( 1 - 7.05T + 13T^{2} \)
17 \( 1 - 4.09T + 17T^{2} \)
19 \( 1 - 0.567T + 19T^{2} \)
23 \( 1 - 6.30T + 23T^{2} \)
29 \( 1 + 2.78T + 29T^{2} \)
31 \( 1 + 0.995T + 31T^{2} \)
37 \( 1 + 3.55T + 37T^{2} \)
41 \( 1 - 1.16T + 41T^{2} \)
43 \( 1 - 0.117T + 43T^{2} \)
47 \( 1 - 7.64T + 47T^{2} \)
53 \( 1 - 0.523T + 53T^{2} \)
59 \( 1 - 0.983T + 59T^{2} \)
61 \( 1 - 10.6T + 61T^{2} \)
67 \( 1 + 15.2T + 67T^{2} \)
71 \( 1 + 10.6T + 71T^{2} \)
73 \( 1 - 5.55T + 73T^{2} \)
79 \( 1 + 14.5T + 79T^{2} \)
83 \( 1 - 5.02T + 83T^{2} \)
89 \( 1 - 2.82T + 89T^{2} \)
97 \( 1 + 1.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.974202738068428167742934981653, −8.738805915098542627708178618202, −7.76025972263796058152352709409, −7.03923523733820074434378734471, −6.08358302792928319859791001929, −5.27690454012064343135306359959, −4.27464149691434021308747497577, −3.47464187506563361008315325574, −1.53941946295797567691624508938, −0.987353738408260084385826513754, 0.987353738408260084385826513754, 1.53941946295797567691624508938, 3.47464187506563361008315325574, 4.27464149691434021308747497577, 5.27690454012064343135306359959, 6.08358302792928319859791001929, 7.03923523733820074434378734471, 7.76025972263796058152352709409, 8.738805915098542627708178618202, 8.974202738068428167742934981653

Graph of the $Z$-function along the critical line