L(s) = 1 | + 3.46i·5-s + (1.5 + 0.866i)7-s + (−3 + 1.73i)11-s + (3.5 + 0.866i)13-s + (−3 − 1.73i)19-s + (3 + 5.19i)23-s − 6.99·25-s + (3 + 5.19i)29-s + 1.73i·31-s + (−2.99 + 5.19i)35-s + (6 − 3.46i)41-s + (−0.5 + 0.866i)43-s − 3.46i·47-s + (−2 − 3.46i)49-s − 12·53-s + ⋯ |
L(s) = 1 | + 1.54i·5-s + (0.566 + 0.327i)7-s + (−0.904 + 0.522i)11-s + (0.970 + 0.240i)13-s + (−0.688 − 0.397i)19-s + (0.625 + 1.08i)23-s − 1.39·25-s + (0.557 + 0.964i)29-s + 0.311i·31-s + (−0.507 + 0.878i)35-s + (0.937 − 0.541i)41-s + (−0.0762 + 0.132i)43-s − 0.505i·47-s + (−0.285 − 0.494i)49-s − 1.64·53-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)(−0.711−0.702i)Λ(2−s)
Λ(s)=(=(1872s/2ΓC(s+1/2)L(s)(−0.711−0.702i)Λ(1−s)
Degree: |
2 |
Conductor: |
1872
= 24⋅32⋅13
|
Sign: |
−0.711−0.702i
|
Analytic conductor: |
14.9479 |
Root analytic conductor: |
3.86626 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1872(1297,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1872, ( :1/2), −0.711−0.702i)
|
Particular Values
L(1) |
≈ |
1.487684791 |
L(21) |
≈ |
1.487684791 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(−3.5−0.866i)T |
good | 5 | 1−3.46iT−5T2 |
| 7 | 1+(−1.5−0.866i)T+(3.5+6.06i)T2 |
| 11 | 1+(3−1.73i)T+(5.5−9.52i)T2 |
| 17 | 1+(−8.5−14.7i)T2 |
| 19 | 1+(3+1.73i)T+(9.5+16.4i)T2 |
| 23 | 1+(−3−5.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−3−5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1−1.73iT−31T2 |
| 37 | 1+(18.5−32.0i)T2 |
| 41 | 1+(−6+3.46i)T+(20.5−35.5i)T2 |
| 43 | 1+(0.5−0.866i)T+(−21.5−37.2i)T2 |
| 47 | 1+3.46iT−47T2 |
| 53 | 1+12T+53T2 |
| 59 | 1+(3+1.73i)T+(29.5+51.0i)T2 |
| 61 | 1+(0.5−0.866i)T+(−30.5−52.8i)T2 |
| 67 | 1+(7.5−4.33i)T+(33.5−58.0i)T2 |
| 71 | 1+(9+5.19i)T+(35.5+61.4i)T2 |
| 73 | 1+1.73iT−73T2 |
| 79 | 1−11T+79T2 |
| 83 | 1−13.8iT−83T2 |
| 89 | 1+(6−3.46i)T+(44.5−77.0i)T2 |
| 97 | 1+(4.5+2.59i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.575998133364500977744244022024, −8.692700063809163301382088294009, −7.85368742182022637492133138713, −7.12709110255618987692534609081, −6.48037458057486404128717187484, −5.57727699753901817016429502406, −4.65716645406775715395121822368, −3.48490803466939314477923148091, −2.72693299224450383401279500980, −1.71402981877806298870744535869,
0.55217117108562369530930829237, 1.55261980507020798552462442305, 2.91854700757476451901906785866, 4.28323666195234539858464983190, 4.69179727652537013997358929311, 5.68227205182762207979301500021, 6.32696931124475418608866006642, 7.77246511181238394803567399300, 8.185671717299670862931690995473, 8.761769351219909915723949317334