Properties

Label 2-1872-1.1-c3-0-81
Degree $2$
Conductor $1872$
Sign $-1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·5-s + 4·7-s + 36·11-s + 13·13-s − 66·17-s − 56·19-s + 96·23-s − 89·25-s − 222·29-s − 260·31-s + 24·35-s − 106·37-s + 90·41-s − 44·43-s + 168·47-s − 327·49-s − 30·53-s + 216·55-s + 348·59-s − 346·61-s + 78·65-s + 256·67-s − 168·71-s − 814·73-s + 144·77-s − 200·79-s + 1.23e3·83-s + ⋯
L(s)  = 1  + 0.536·5-s + 0.215·7-s + 0.986·11-s + 0.277·13-s − 0.941·17-s − 0.676·19-s + 0.870·23-s − 0.711·25-s − 1.42·29-s − 1.50·31-s + 0.115·35-s − 0.470·37-s + 0.342·41-s − 0.156·43-s + 0.521·47-s − 0.953·49-s − 0.0777·53-s + 0.529·55-s + 0.767·59-s − 0.726·61-s + 0.148·65-s + 0.466·67-s − 0.280·71-s − 1.30·73-s + 0.213·77-s − 0.284·79-s + 1.63·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - p T \)
good5 \( 1 - 6 T + p^{3} T^{2} \)
7 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 - 36 T + p^{3} T^{2} \)
17 \( 1 + 66 T + p^{3} T^{2} \)
19 \( 1 + 56 T + p^{3} T^{2} \)
23 \( 1 - 96 T + p^{3} T^{2} \)
29 \( 1 + 222 T + p^{3} T^{2} \)
31 \( 1 + 260 T + p^{3} T^{2} \)
37 \( 1 + 106 T + p^{3} T^{2} \)
41 \( 1 - 90 T + p^{3} T^{2} \)
43 \( 1 + 44 T + p^{3} T^{2} \)
47 \( 1 - 168 T + p^{3} T^{2} \)
53 \( 1 + 30 T + p^{3} T^{2} \)
59 \( 1 - 348 T + p^{3} T^{2} \)
61 \( 1 + 346 T + p^{3} T^{2} \)
67 \( 1 - 256 T + p^{3} T^{2} \)
71 \( 1 + 168 T + p^{3} T^{2} \)
73 \( 1 + 814 T + p^{3} T^{2} \)
79 \( 1 + 200 T + p^{3} T^{2} \)
83 \( 1 - 1236 T + p^{3} T^{2} \)
89 \( 1 + 318 T + p^{3} T^{2} \)
97 \( 1 + 502 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.760655461053525863548133306562, −7.61777654038330747002093782203, −6.84475166749525088433853387170, −6.10401743314583280430330898378, −5.31912031151596970082541397253, −4.28206935869725760439513685793, −3.52955734910080000120246756361, −2.19120821516584182377322767414, −1.46632696507118953976319481681, 0, 1.46632696507118953976319481681, 2.19120821516584182377322767414, 3.52955734910080000120246756361, 4.28206935869725760439513685793, 5.31912031151596970082541397253, 6.10401743314583280430330898378, 6.84475166749525088433853387170, 7.61777654038330747002093782203, 8.760655461053525863548133306562

Graph of the $Z$-function along the critical line