Properties

Label 2-1872-1.1-c3-0-76
Degree $2$
Conductor $1872$
Sign $-1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 26·7-s − 52·11-s − 13·13-s + 48·17-s − 18·19-s + 52·23-s − 121·25-s + 224·29-s − 310·31-s + 52·35-s − 18·37-s + 330·41-s − 328·43-s − 616·47-s + 333·49-s − 324·53-s − 104·55-s − 188·59-s − 110·61-s − 26·65-s − 118·67-s + 656·71-s − 178·73-s − 1.35e3·77-s − 836·79-s − 60·83-s + ⋯
L(s)  = 1  + 0.178·5-s + 1.40·7-s − 1.42·11-s − 0.277·13-s + 0.684·17-s − 0.217·19-s + 0.471·23-s − 0.967·25-s + 1.43·29-s − 1.79·31-s + 0.251·35-s − 0.0799·37-s + 1.25·41-s − 1.16·43-s − 1.91·47-s + 0.970·49-s − 0.839·53-s − 0.254·55-s − 0.414·59-s − 0.230·61-s − 0.0496·65-s − 0.215·67-s + 1.09·71-s − 0.285·73-s − 2.00·77-s − 1.19·79-s − 0.0793·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + p T \)
good5 \( 1 - 2 T + p^{3} T^{2} \)
7 \( 1 - 26 T + p^{3} T^{2} \)
11 \( 1 + 52 T + p^{3} T^{2} \)
17 \( 1 - 48 T + p^{3} T^{2} \)
19 \( 1 + 18 T + p^{3} T^{2} \)
23 \( 1 - 52 T + p^{3} T^{2} \)
29 \( 1 - 224 T + p^{3} T^{2} \)
31 \( 1 + 10 p T + p^{3} T^{2} \)
37 \( 1 + 18 T + p^{3} T^{2} \)
41 \( 1 - 330 T + p^{3} T^{2} \)
43 \( 1 + 328 T + p^{3} T^{2} \)
47 \( 1 + 616 T + p^{3} T^{2} \)
53 \( 1 + 324 T + p^{3} T^{2} \)
59 \( 1 + 188 T + p^{3} T^{2} \)
61 \( 1 + 110 T + p^{3} T^{2} \)
67 \( 1 + 118 T + p^{3} T^{2} \)
71 \( 1 - 656 T + p^{3} T^{2} \)
73 \( 1 + 178 T + p^{3} T^{2} \)
79 \( 1 + 836 T + p^{3} T^{2} \)
83 \( 1 + 60 T + p^{3} T^{2} \)
89 \( 1 - 870 T + p^{3} T^{2} \)
97 \( 1 - 1238 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.135012405650642115749201203539, −7.967842107324843502944554482522, −7.06958064319213035349027766732, −5.89049158878586314574295723891, −5.13110231626004154442641865849, −4.63191182902429422519003391810, −3.33402360311650353828879734588, −2.29154885505320094380682933342, −1.41463155805051003515867229203, 0, 1.41463155805051003515867229203, 2.29154885505320094380682933342, 3.33402360311650353828879734588, 4.63191182902429422519003391810, 5.13110231626004154442641865849, 5.89049158878586314574295723891, 7.06958064319213035349027766732, 7.967842107324843502944554482522, 8.135012405650642115749201203539

Graph of the $Z$-function along the critical line