Properties

Label 2-1872-1.1-c3-0-56
Degree $2$
Conductor $1872$
Sign $-1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·5-s − 20·7-s + 24·11-s + 13·13-s + 30·17-s + 16·19-s − 72·23-s − 89·25-s + 282·29-s − 164·31-s + 120·35-s + 110·37-s + 126·41-s − 164·43-s − 204·47-s + 57·49-s + 738·53-s − 144·55-s + 120·59-s + 614·61-s − 78·65-s − 848·67-s + 132·71-s + 218·73-s − 480·77-s + 1.09e3·79-s + 552·83-s + ⋯
L(s)  = 1  − 0.536·5-s − 1.07·7-s + 0.657·11-s + 0.277·13-s + 0.428·17-s + 0.193·19-s − 0.652·23-s − 0.711·25-s + 1.80·29-s − 0.950·31-s + 0.579·35-s + 0.488·37-s + 0.479·41-s − 0.581·43-s − 0.633·47-s + 0.166·49-s + 1.91·53-s − 0.353·55-s + 0.264·59-s + 1.28·61-s − 0.148·65-s − 1.54·67-s + 0.220·71-s + 0.349·73-s − 0.710·77-s + 1.56·79-s + 0.729·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - p T \)
good5 \( 1 + 6 T + p^{3} T^{2} \)
7 \( 1 + 20 T + p^{3} T^{2} \)
11 \( 1 - 24 T + p^{3} T^{2} \)
17 \( 1 - 30 T + p^{3} T^{2} \)
19 \( 1 - 16 T + p^{3} T^{2} \)
23 \( 1 + 72 T + p^{3} T^{2} \)
29 \( 1 - 282 T + p^{3} T^{2} \)
31 \( 1 + 164 T + p^{3} T^{2} \)
37 \( 1 - 110 T + p^{3} T^{2} \)
41 \( 1 - 126 T + p^{3} T^{2} \)
43 \( 1 + 164 T + p^{3} T^{2} \)
47 \( 1 + 204 T + p^{3} T^{2} \)
53 \( 1 - 738 T + p^{3} T^{2} \)
59 \( 1 - 120 T + p^{3} T^{2} \)
61 \( 1 - 614 T + p^{3} T^{2} \)
67 \( 1 + 848 T + p^{3} T^{2} \)
71 \( 1 - 132 T + p^{3} T^{2} \)
73 \( 1 - 218 T + p^{3} T^{2} \)
79 \( 1 - 1096 T + p^{3} T^{2} \)
83 \( 1 - 552 T + p^{3} T^{2} \)
89 \( 1 + 210 T + p^{3} T^{2} \)
97 \( 1 + 1726 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.460927541068129522516634245310, −7.72767882584697136002012332561, −6.79043842710023797969185955056, −6.23989418328161810465906319080, −5.29851559016372706222394964015, −4.08389471868059630471562959481, −3.56478878686693924459734333556, −2.53297029940447166104542452433, −1.13002115081879362538873988443, 0, 1.13002115081879362538873988443, 2.53297029940447166104542452433, 3.56478878686693924459734333556, 4.08389471868059630471562959481, 5.29851559016372706222394964015, 6.23989418328161810465906319080, 6.79043842710023797969185955056, 7.72767882584697136002012332561, 8.460927541068129522516634245310

Graph of the $Z$-function along the critical line