Properties

Label 2-1872-1.1-c3-0-46
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·5-s + 21·7-s + 6·11-s + 13·13-s + 115·17-s + 46·19-s + 144·23-s − 76·25-s + 162·29-s − 180·31-s + 147·35-s + 13·37-s − 192·41-s + 33·43-s + 383·47-s + 98·49-s − 288·53-s + 42·55-s + 442·59-s − 680·61-s + 91·65-s + 722·67-s − 207·71-s + 274·73-s + 126·77-s + 936·79-s − 1.20e3·83-s + ⋯
L(s)  = 1  + 0.626·5-s + 1.13·7-s + 0.164·11-s + 0.277·13-s + 1.64·17-s + 0.555·19-s + 1.30·23-s − 0.607·25-s + 1.03·29-s − 1.04·31-s + 0.709·35-s + 0.0577·37-s − 0.731·41-s + 0.117·43-s + 1.18·47-s + 2/7·49-s − 0.746·53-s + 0.102·55-s + 0.975·59-s − 1.42·61-s + 0.173·65-s + 1.31·67-s − 0.346·71-s + 0.439·73-s + 0.186·77-s + 1.33·79-s − 1.59·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.557588531\)
\(L(\frac12)\) \(\approx\) \(3.557588531\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - p T \)
good5 \( 1 - 7 T + p^{3} T^{2} \)
7 \( 1 - 3 p T + p^{3} T^{2} \)
11 \( 1 - 6 T + p^{3} T^{2} \)
17 \( 1 - 115 T + p^{3} T^{2} \)
19 \( 1 - 46 T + p^{3} T^{2} \)
23 \( 1 - 144 T + p^{3} T^{2} \)
29 \( 1 - 162 T + p^{3} T^{2} \)
31 \( 1 + 180 T + p^{3} T^{2} \)
37 \( 1 - 13 T + p^{3} T^{2} \)
41 \( 1 + 192 T + p^{3} T^{2} \)
43 \( 1 - 33 T + p^{3} T^{2} \)
47 \( 1 - 383 T + p^{3} T^{2} \)
53 \( 1 + 288 T + p^{3} T^{2} \)
59 \( 1 - 442 T + p^{3} T^{2} \)
61 \( 1 + 680 T + p^{3} T^{2} \)
67 \( 1 - 722 T + p^{3} T^{2} \)
71 \( 1 + 207 T + p^{3} T^{2} \)
73 \( 1 - 274 T + p^{3} T^{2} \)
79 \( 1 - 936 T + p^{3} T^{2} \)
83 \( 1 + 1204 T + p^{3} T^{2} \)
89 \( 1 - 966 T + p^{3} T^{2} \)
97 \( 1 + 138 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.901826782215708878460649953225, −8.022095303096988216941686101327, −7.44832115774631302037837075595, −6.44976355644166394511906901157, −5.44649340739693040798376149835, −5.07466339228531419562784624795, −3.87479199434103494647863708531, −2.88498306112293453404444618372, −1.68702901703188181414439591414, −0.974353601692816649912859366023, 0.974353601692816649912859366023, 1.68702901703188181414439591414, 2.88498306112293453404444618372, 3.87479199434103494647863708531, 5.07466339228531419562784624795, 5.44649340739693040798376149835, 6.44976355644166394511906901157, 7.44832115774631302037837075595, 8.022095303096988216941686101327, 8.901826782215708878460649953225

Graph of the $Z$-function along the critical line