L(s) = 1 | + 7·5-s + 21·7-s + 6·11-s + 13·13-s + 115·17-s + 46·19-s + 144·23-s − 76·25-s + 162·29-s − 180·31-s + 147·35-s + 13·37-s − 192·41-s + 33·43-s + 383·47-s + 98·49-s − 288·53-s + 42·55-s + 442·59-s − 680·61-s + 91·65-s + 722·67-s − 207·71-s + 274·73-s + 126·77-s + 936·79-s − 1.20e3·83-s + ⋯ |
L(s) = 1 | + 0.626·5-s + 1.13·7-s + 0.164·11-s + 0.277·13-s + 1.64·17-s + 0.555·19-s + 1.30·23-s − 0.607·25-s + 1.03·29-s − 1.04·31-s + 0.709·35-s + 0.0577·37-s − 0.731·41-s + 0.117·43-s + 1.18·47-s + 2/7·49-s − 0.746·53-s + 0.102·55-s + 0.975·59-s − 1.42·61-s + 0.173·65-s + 1.31·67-s − 0.346·71-s + 0.439·73-s + 0.186·77-s + 1.33·79-s − 1.59·83-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1872s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.557588531 |
L(21) |
≈ |
3.557588531 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1−pT |
good | 5 | 1−7T+p3T2 |
| 7 | 1−3pT+p3T2 |
| 11 | 1−6T+p3T2 |
| 17 | 1−115T+p3T2 |
| 19 | 1−46T+p3T2 |
| 23 | 1−144T+p3T2 |
| 29 | 1−162T+p3T2 |
| 31 | 1+180T+p3T2 |
| 37 | 1−13T+p3T2 |
| 41 | 1+192T+p3T2 |
| 43 | 1−33T+p3T2 |
| 47 | 1−383T+p3T2 |
| 53 | 1+288T+p3T2 |
| 59 | 1−442T+p3T2 |
| 61 | 1+680T+p3T2 |
| 67 | 1−722T+p3T2 |
| 71 | 1+207T+p3T2 |
| 73 | 1−274T+p3T2 |
| 79 | 1−936T+p3T2 |
| 83 | 1+1204T+p3T2 |
| 89 | 1−966T+p3T2 |
| 97 | 1+138T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.901826782215708878460649953225, −8.022095303096988216941686101327, −7.44832115774631302037837075595, −6.44976355644166394511906901157, −5.44649340739693040798376149835, −5.07466339228531419562784624795, −3.87479199434103494647863708531, −2.88498306112293453404444618372, −1.68702901703188181414439591414, −0.974353601692816649912859366023,
0.974353601692816649912859366023, 1.68702901703188181414439591414, 2.88498306112293453404444618372, 3.87479199434103494647863708531, 5.07466339228531419562784624795, 5.44649340739693040798376149835, 6.44976355644166394511906901157, 7.44832115774631302037837075595, 8.022095303096988216941686101327, 8.901826782215708878460649953225