Properties

Label 2-1872-1.1-c1-0-4
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 5·7-s − 2·11-s − 13-s + 3·17-s + 2·19-s + 4·23-s − 4·25-s + 6·29-s + 4·31-s − 5·35-s + 11·37-s − 8·41-s + 43-s + 9·47-s + 18·49-s + 12·53-s − 2·55-s + 6·59-s − 65-s − 6·67-s + 7·71-s − 2·73-s + 10·77-s − 12·79-s − 16·83-s + 3·85-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.88·7-s − 0.603·11-s − 0.277·13-s + 0.727·17-s + 0.458·19-s + 0.834·23-s − 4/5·25-s + 1.11·29-s + 0.718·31-s − 0.845·35-s + 1.80·37-s − 1.24·41-s + 0.152·43-s + 1.31·47-s + 18/7·49-s + 1.64·53-s − 0.269·55-s + 0.781·59-s − 0.124·65-s − 0.733·67-s + 0.830·71-s − 0.234·73-s + 1.13·77-s − 1.35·79-s − 1.75·83-s + 0.325·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.366716428\)
\(L(\frac12)\) \(\approx\) \(1.366716428\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - T + p T^{2} \)
7 \( 1 + 5 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 11 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 + 6 T + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.399377966647754514275339054317, −8.571559742557125580918706419247, −7.51880508752900332556843831011, −6.82508995489029179736833518542, −6.01472830731285355227624329326, −5.41568943920328063726692378316, −4.19080409729406201912090076952, −3.11607344408057507029997990678, −2.55679172121781849822247168687, −0.77347272515720828453769161406, 0.77347272515720828453769161406, 2.55679172121781849822247168687, 3.11607344408057507029997990678, 4.19080409729406201912090076952, 5.41568943920328063726692378316, 6.01472830731285355227624329326, 6.82508995489029179736833518542, 7.51880508752900332556843831011, 8.571559742557125580918706419247, 9.399377966647754514275339054317

Graph of the $Z$-function along the critical line