L(s) = 1 | − 2·5-s + 2·7-s − 2·11-s − 13-s − 6·17-s + 6·19-s + 8·23-s − 25-s − 2·29-s − 10·31-s − 4·35-s − 6·37-s + 6·41-s − 4·43-s − 2·47-s − 3·49-s − 6·53-s + 4·55-s − 10·59-s − 2·61-s + 2·65-s − 10·67-s + 10·71-s + 2·73-s − 4·77-s + 4·79-s − 6·83-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 0.755·7-s − 0.603·11-s − 0.277·13-s − 1.45·17-s + 1.37·19-s + 1.66·23-s − 1/5·25-s − 0.371·29-s − 1.79·31-s − 0.676·35-s − 0.986·37-s + 0.937·41-s − 0.609·43-s − 0.291·47-s − 3/7·49-s − 0.824·53-s + 0.539·55-s − 1.30·59-s − 0.256·61-s + 0.248·65-s − 1.22·67-s + 1.18·71-s + 0.234·73-s − 0.455·77-s + 0.450·79-s − 0.658·83-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1872s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+T |
good | 5 | 1+2T+pT2 |
| 7 | 1−2T+pT2 |
| 11 | 1+2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−6T+pT2 |
| 23 | 1−8T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+10T+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1+2T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+10T+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1+10T+pT2 |
| 71 | 1−10T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.903536245670668621130507435375, −7.83308528800069718366669266159, −7.49854626403200308211384803397, −6.64015478034033294776010370075, −5.31166823001739669969266033554, −4.85834450825080168955307576161, −3.82761340677172253473232515863, −2.88210740590618426101881210417, −1.61933703544595924973302121161, 0,
1.61933703544595924973302121161, 2.88210740590618426101881210417, 3.82761340677172253473232515863, 4.85834450825080168955307576161, 5.31166823001739669969266033554, 6.64015478034033294776010370075, 7.49854626403200308211384803397, 7.83308528800069718366669266159, 8.903536245670668621130507435375