Properties

Label 2-1872-1.1-c1-0-20
Degree $2$
Conductor $1872$
Sign $-1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 13-s − 2·17-s + 4·19-s − 25-s − 6·29-s − 2·37-s − 6·41-s + 12·43-s − 4·47-s − 7·49-s − 6·53-s − 8·59-s − 2·61-s − 2·65-s − 4·67-s − 12·71-s − 14·73-s + 8·83-s + 4·85-s + 18·89-s − 8·95-s − 6·97-s − 14·101-s − 16·103-s + 4·107-s − 2·109-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.277·13-s − 0.485·17-s + 0.917·19-s − 1/5·25-s − 1.11·29-s − 0.328·37-s − 0.937·41-s + 1.82·43-s − 0.583·47-s − 49-s − 0.824·53-s − 1.04·59-s − 0.256·61-s − 0.248·65-s − 0.488·67-s − 1.42·71-s − 1.63·73-s + 0.878·83-s + 0.433·85-s + 1.90·89-s − 0.820·95-s − 0.609·97-s − 1.39·101-s − 1.57·103-s + 0.386·107-s − 0.191·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 - 18 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.879911485018581552559778228194, −7.87497595233942443821507658391, −7.48206171863010651464390955453, −6.50109862386502065678161037272, −5.60510042774675865346276845379, −4.63629406156287515269954623878, −3.80747723245115179033242709882, −2.97565069723020365742526516584, −1.57297786911914117520864059523, 0, 1.57297786911914117520864059523, 2.97565069723020365742526516584, 3.80747723245115179033242709882, 4.63629406156287515269954623878, 5.60510042774675865346276845379, 6.50109862386502065678161037272, 7.48206171863010651464390955453, 7.87497595233942443821507658391, 8.879911485018581552559778228194

Graph of the $Z$-function along the critical line