L(s) = 1 | + 3·5-s + 7-s + 6·11-s + 13-s + 3·17-s − 2·19-s + 4·25-s − 6·29-s + 4·31-s + 3·35-s − 7·37-s + 43-s + 3·47-s − 6·49-s + 18·55-s − 6·59-s + 8·61-s + 3·65-s − 14·67-s − 3·71-s + 2·73-s + 6·77-s − 8·79-s + 12·83-s + 9·85-s + 6·89-s + 91-s + ⋯ |
L(s) = 1 | + 1.34·5-s + 0.377·7-s + 1.80·11-s + 0.277·13-s + 0.727·17-s − 0.458·19-s + 4/5·25-s − 1.11·29-s + 0.718·31-s + 0.507·35-s − 1.15·37-s + 0.152·43-s + 0.437·47-s − 6/7·49-s + 2.42·55-s − 0.781·59-s + 1.02·61-s + 0.372·65-s − 1.71·67-s − 0.356·71-s + 0.234·73-s + 0.683·77-s − 0.900·79-s + 1.31·83-s + 0.976·85-s + 0.635·89-s + 0.104·91-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1872s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.679014865 |
L(21) |
≈ |
2.679014865 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1−T |
good | 5 | 1−3T+pT2 |
| 7 | 1−T+pT2 |
| 11 | 1−6T+pT2 |
| 17 | 1−3T+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+7T+pT2 |
| 41 | 1+pT2 |
| 43 | 1−T+pT2 |
| 47 | 1−3T+pT2 |
| 53 | 1+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1−8T+pT2 |
| 67 | 1+14T+pT2 |
| 71 | 1+3T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.197451332644930457875280868446, −8.727543231328509862646305089705, −7.62631082392611378394973504804, −6.63805072209796513425044648809, −6.10177969443293897115150871480, −5.33155182765537854352160831380, −4.28669590144044996642748248504, −3.33995220257029308986401899415, −1.98547611328597681321826282171, −1.28946814831643962415194675902,
1.28946814831643962415194675902, 1.98547611328597681321826282171, 3.33995220257029308986401899415, 4.28669590144044996642748248504, 5.33155182765537854352160831380, 6.10177969443293897115150871480, 6.63805072209796513425044648809, 7.62631082392611378394973504804, 8.727543231328509862646305089705, 9.197451332644930457875280868446