Properties

Label 2-1872-1.1-c1-0-15
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 7-s + 6·11-s + 13-s + 3·17-s − 2·19-s + 4·25-s − 6·29-s + 4·31-s + 3·35-s − 7·37-s + 43-s + 3·47-s − 6·49-s + 18·55-s − 6·59-s + 8·61-s + 3·65-s − 14·67-s − 3·71-s + 2·73-s + 6·77-s − 8·79-s + 12·83-s + 9·85-s + 6·89-s + 91-s + ⋯
L(s)  = 1  + 1.34·5-s + 0.377·7-s + 1.80·11-s + 0.277·13-s + 0.727·17-s − 0.458·19-s + 4/5·25-s − 1.11·29-s + 0.718·31-s + 0.507·35-s − 1.15·37-s + 0.152·43-s + 0.437·47-s − 6/7·49-s + 2.42·55-s − 0.781·59-s + 1.02·61-s + 0.372·65-s − 1.71·67-s − 0.356·71-s + 0.234·73-s + 0.683·77-s − 0.900·79-s + 1.31·83-s + 0.976·85-s + 0.635·89-s + 0.104·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.679014865\)
\(L(\frac12)\) \(\approx\) \(2.679014865\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.197451332644930457875280868446, −8.727543231328509862646305089705, −7.62631082392611378394973504804, −6.63805072209796513425044648809, −6.10177969443293897115150871480, −5.33155182765537854352160831380, −4.28669590144044996642748248504, −3.33995220257029308986401899415, −1.98547611328597681321826282171, −1.28946814831643962415194675902, 1.28946814831643962415194675902, 1.98547611328597681321826282171, 3.33995220257029308986401899415, 4.28669590144044996642748248504, 5.33155182765537854352160831380, 6.10177969443293897115150871480, 6.63805072209796513425044648809, 7.62631082392611378394973504804, 8.727543231328509862646305089705, 9.197451332644930457875280868446

Graph of the $Z$-function along the critical line