Properties

Label 2-1872-1.1-c1-0-12
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 4·7-s + 4·11-s − 13-s + 8·23-s + 11·25-s − 8·29-s − 4·31-s − 16·35-s + 6·37-s + 12·41-s + 8·43-s + 4·47-s + 9·49-s + 16·55-s − 4·59-s − 2·61-s − 4·65-s + 8·67-s + 4·71-s − 10·73-s − 16·77-s + 4·79-s − 12·83-s − 12·89-s + 4·91-s + 14·97-s + ⋯
L(s)  = 1  + 1.78·5-s − 1.51·7-s + 1.20·11-s − 0.277·13-s + 1.66·23-s + 11/5·25-s − 1.48·29-s − 0.718·31-s − 2.70·35-s + 0.986·37-s + 1.87·41-s + 1.21·43-s + 0.583·47-s + 9/7·49-s + 2.15·55-s − 0.520·59-s − 0.256·61-s − 0.496·65-s + 0.977·67-s + 0.474·71-s − 1.17·73-s − 1.82·77-s + 0.450·79-s − 1.31·83-s − 1.27·89-s + 0.419·91-s + 1.42·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.249762044\)
\(L(\frac12)\) \(\approx\) \(2.249762044\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.283309900561460264303460080023, −9.043893881767278031288410702249, −7.35411058268733168359690626917, −6.72499661989682939095500288427, −5.99934179950640698199375325057, −5.54340160378585790784255817080, −4.24052892769095243824819538025, −3.14438875263608746657555973525, −2.30677622130328505633184150541, −1.07183735496432547021055620536, 1.07183735496432547021055620536, 2.30677622130328505633184150541, 3.14438875263608746657555973525, 4.24052892769095243824819538025, 5.54340160378585790784255817080, 5.99934179950640698199375325057, 6.72499661989682939095500288427, 7.35411058268733168359690626917, 9.043893881767278031288410702249, 9.283309900561460264303460080023

Graph of the $Z$-function along the critical line