Properties

Label 2-1872-1.1-c1-0-11
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s − 4·11-s − 13-s + 6·19-s + 4·23-s − 25-s + 8·29-s + 2·31-s + 4·35-s + 6·37-s − 6·41-s + 8·43-s + 8·47-s − 3·49-s − 12·53-s − 8·55-s + 4·59-s + 10·61-s − 2·65-s + 2·67-s − 16·71-s + 14·73-s − 8·77-s + 4·79-s − 12·83-s + 6·89-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s − 1.20·11-s − 0.277·13-s + 1.37·19-s + 0.834·23-s − 1/5·25-s + 1.48·29-s + 0.359·31-s + 0.676·35-s + 0.986·37-s − 0.937·41-s + 1.21·43-s + 1.16·47-s − 3/7·49-s − 1.64·53-s − 1.07·55-s + 0.520·59-s + 1.28·61-s − 0.248·65-s + 0.244·67-s − 1.89·71-s + 1.63·73-s − 0.911·77-s + 0.450·79-s − 1.31·83-s + 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.215696042\)
\(L(\frac12)\) \(\approx\) \(2.215696042\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + 16 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.374800673600871396369360815682, −8.345885893689355266865433880677, −7.74982624300516502645234312538, −6.91437440844756442579529153190, −5.85428751909866229664883723997, −5.21397578582522565243253635444, −4.55774581547134998480701833621, −3.06816752901810724197585330945, −2.30205596173135729346442665808, −1.06736363009885798558856425967, 1.06736363009885798558856425967, 2.30205596173135729346442665808, 3.06816752901810724197585330945, 4.55774581547134998480701833621, 5.21397578582522565243253635444, 5.85428751909866229664883723997, 6.91437440844756442579529153190, 7.74982624300516502645234312538, 8.345885893689355266865433880677, 9.374800673600871396369360815682

Graph of the $Z$-function along the critical line