Properties

Label 2-1872-1.1-c1-0-10
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 2·11-s − 13-s + 6·17-s + 4·19-s + 4·23-s − 5·25-s − 10·29-s + 8·31-s − 2·37-s + 4·43-s + 2·47-s + 9·49-s + 2·53-s + 10·59-s + 10·61-s − 8·67-s + 2·71-s − 10·73-s − 8·77-s − 8·79-s + 6·83-s + 12·89-s − 4·91-s − 2·97-s − 2·101-s + 16·103-s + ⋯
L(s)  = 1  + 1.51·7-s − 0.603·11-s − 0.277·13-s + 1.45·17-s + 0.917·19-s + 0.834·23-s − 25-s − 1.85·29-s + 1.43·31-s − 0.328·37-s + 0.609·43-s + 0.291·47-s + 9/7·49-s + 0.274·53-s + 1.30·59-s + 1.28·61-s − 0.977·67-s + 0.237·71-s − 1.17·73-s − 0.911·77-s − 0.900·79-s + 0.658·83-s + 1.27·89-s − 0.419·91-s − 0.203·97-s − 0.199·101-s + 1.57·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.130350495\)
\(L(\frac12)\) \(\approx\) \(2.130350495\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 2 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.239289551943017123934612848385, −8.246518608998310493379441373007, −7.71387236722259124950052322681, −7.17292965380990182887285956413, −5.66602342897317417961265171945, −5.33322403312144877575207388138, −4.39131354020728293864682849714, −3.31414609411084864193635820227, −2.15956775014138729773769000571, −1.06254916932353976871281040816, 1.06254916932353976871281040816, 2.15956775014138729773769000571, 3.31414609411084864193635820227, 4.39131354020728293864682849714, 5.33322403312144877575207388138, 5.66602342897317417961265171945, 7.17292965380990182887285956413, 7.71387236722259124950052322681, 8.246518608998310493379441373007, 9.239289551943017123934612848385

Graph of the $Z$-function along the critical line