| L(s) = 1 | + (0.809 − 0.587i)2-s + (−0.809 + 0.587i)3-s + (0.309 − 0.951i)4-s + 5-s + (−0.309 + 0.951i)6-s + (−0.309 − 0.951i)8-s + (0.309 − 0.951i)9-s + (0.809 − 0.587i)10-s + (0.309 + 0.951i)12-s + (−0.809 + 0.587i)15-s + (−0.809 − 0.587i)16-s + (−0.309 − 0.951i)18-s + (0.690 − 0.951i)19-s + (0.309 − 0.951i)20-s + (−0.190 + 0.587i)23-s + (0.809 + 0.587i)24-s + ⋯ |
| L(s) = 1 | + (0.809 − 0.587i)2-s + (−0.809 + 0.587i)3-s + (0.309 − 0.951i)4-s + 5-s + (−0.309 + 0.951i)6-s + (−0.309 − 0.951i)8-s + (0.309 − 0.951i)9-s + (0.809 − 0.587i)10-s + (0.309 + 0.951i)12-s + (−0.809 + 0.587i)15-s + (−0.809 − 0.587i)16-s + (−0.309 − 0.951i)18-s + (0.690 − 0.951i)19-s + (0.309 − 0.951i)20-s + (−0.190 + 0.587i)23-s + (0.809 + 0.587i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 + 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 + 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.643971246\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.643971246\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 3 | \( 1 + (0.809 - 0.587i)T \) |
| 5 | \( 1 - T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| good | 7 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 11 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.690 + 0.951i)T + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 47 | \( 1 + (-1.11 - 1.53i)T + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (1.11 + 0.363i)T + (0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 - 1.17iT - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.382979756938008877586287180545, −9.171944892064632850199557686409, −7.41412188681288960369484987895, −6.55241758044160730898376861965, −5.82101165652754544591178294139, −5.26532189365900150104608408900, −4.49876845628826680620453637328, −3.50406459244607092231255741000, −2.46403116303247645554439243865, −1.18101840077494958566907930452,
1.62927469754151914494956834961, 2.65440979544589419323736901972, 3.92931043357240934054427857093, 5.07485738999547837359178308861, 5.54766106493140797177295970345, 6.27763249087299273818585944964, 6.92232958080548755146923910897, 7.69725640359054565877162172788, 8.540003043577932846906887954625, 9.539166228349723488487570672020