L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.809 − 0.587i)3-s + (0.309 + 0.951i)4-s − 2.51·5-s − 6-s + (−1.13 − 3.50i)7-s + (0.309 − 0.951i)8-s + (0.309 − 0.951i)9-s + (2.03 + 1.47i)10-s + (−1.39 − 4.29i)11-s + (0.809 + 0.587i)12-s + (3.15 − 2.28i)13-s + (−1.13 + 3.50i)14-s + (−2.03 + 1.47i)15-s + (−0.809 + 0.587i)16-s + (−1.17 + 3.60i)17-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (0.467 − 0.339i)3-s + (0.154 + 0.475i)4-s − 1.12·5-s − 0.408·6-s + (−0.430 − 1.32i)7-s + (0.109 − 0.336i)8-s + (0.103 − 0.317i)9-s + (0.643 + 0.467i)10-s + (−0.420 − 1.29i)11-s + (0.233 + 0.169i)12-s + (0.874 − 0.635i)13-s + (−0.304 + 0.936i)14-s + (−0.525 + 0.381i)15-s + (−0.202 + 0.146i)16-s + (−0.284 + 0.874i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 186 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 186 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.361242 - 0.647799i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.361242 - 0.647799i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 31 | \( 1 + (5.11 - 2.18i)T \) |
good | 5 | \( 1 + 2.51T + 5T^{2} \) |
| 7 | \( 1 + (1.13 + 3.50i)T + (-5.66 + 4.11i)T^{2} \) |
| 11 | \( 1 + (1.39 + 4.29i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (-3.15 + 2.28i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (1.17 - 3.60i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-2.53 - 1.84i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-0.618 + 1.90i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-0.256 - 0.186i)T + (8.96 + 27.5i)T^{2} \) |
| 37 | \( 1 - 4.49T + 37T^{2} \) |
| 41 | \( 1 + (-4.96 - 3.60i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (-6.18 - 4.49i)T + (13.2 + 40.8i)T^{2} \) |
| 47 | \( 1 + (-10.0 + 7.28i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (0.926 - 2.85i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (2.36 - 1.71i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + 12.3T + 61T^{2} \) |
| 67 | \( 1 - 11.2T + 67T^{2} \) |
| 71 | \( 1 + (-4.98 + 15.3i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (4.73 + 14.5i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-2.17 + 6.67i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-11.7 - 8.50i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + (-1.74 - 5.38i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-1.69 - 5.20i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.25557406048481986480289435649, −10.91236475746571209256347240893, −10.66536589427406601932800567753, −9.118695075612254780247718654055, −8.031531366678857097525010406532, −7.60768986725259125905008816570, −6.21197352538934304851815620182, −3.95357947876705760337689410673, −3.26773306418212533483680743775, −0.78648432637004769790946664245,
2.51417052047615038558447497056, 4.17475754453154156491257961553, 5.53612804351297327345536544870, 7.05384973844365427184415161578, 7.87567310643189095445304293895, 9.087010810051021256385136777905, 9.461664989038125939181680075171, 10.97963371401815780885231675290, 11.83791221570302928136979782045, 12.79883992734302973007905765228