Properties

Label 2-186-31.18-c1-0-1
Degree $2$
Conductor $186$
Sign $0.681 - 0.731i$
Analytic cond. $1.48521$
Root an. cond. $1.21869$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.809 + 0.587i)2-s + (0.913 − 0.406i)3-s + (0.309 − 0.951i)4-s + (1.72 + 2.98i)5-s + (−0.5 + 0.866i)6-s + (−0.784 − 0.871i)7-s + (0.309 + 0.951i)8-s + (0.669 − 0.743i)9-s + (−3.14 − 1.40i)10-s + (0.704 − 0.149i)11-s + (−0.104 − 0.994i)12-s + (−0.287 + 2.73i)13-s + (1.14 + 0.243i)14-s + (2.78 + 2.02i)15-s + (−0.809 − 0.587i)16-s + (4.31 + 0.916i)17-s + ⋯
L(s)  = 1  + (−0.572 + 0.415i)2-s + (0.527 − 0.234i)3-s + (0.154 − 0.475i)4-s + (0.770 + 1.33i)5-s + (−0.204 + 0.353i)6-s + (−0.296 − 0.329i)7-s + (0.109 + 0.336i)8-s + (0.223 − 0.247i)9-s + (−0.995 − 0.443i)10-s + (0.212 − 0.0451i)11-s + (−0.0301 − 0.287i)12-s + (−0.0796 + 0.757i)13-s + (0.306 + 0.0651i)14-s + (0.719 + 0.522i)15-s + (−0.202 − 0.146i)16-s + (1.04 + 0.222i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 186 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.681 - 0.731i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 186 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.681 - 0.731i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(186\)    =    \(2 \cdot 3 \cdot 31\)
Sign: $0.681 - 0.731i$
Analytic conductor: \(1.48521\)
Root analytic conductor: \(1.21869\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{186} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 186,\ (\ :1/2),\ 0.681 - 0.731i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.06052 + 0.461387i\)
\(L(\frac12)\) \(\approx\) \(1.06052 + 0.461387i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.809 - 0.587i)T \)
3 \( 1 + (-0.913 + 0.406i)T \)
31 \( 1 + (5.51 - 0.782i)T \)
good5 \( 1 + (-1.72 - 2.98i)T + (-2.5 + 4.33i)T^{2} \)
7 \( 1 + (0.784 + 0.871i)T + (-0.731 + 6.96i)T^{2} \)
11 \( 1 + (-0.704 + 0.149i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (0.287 - 2.73i)T + (-12.7 - 2.70i)T^{2} \)
17 \( 1 + (-4.31 - 0.916i)T + (15.5 + 6.91i)T^{2} \)
19 \( 1 + (0.349 + 3.32i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (-0.193 - 0.596i)T + (-18.6 + 13.5i)T^{2} \)
29 \( 1 + (2.30 - 1.67i)T + (8.96 - 27.5i)T^{2} \)
37 \( 1 + (-5.55 + 9.62i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (9.38 + 4.18i)T + (27.4 + 30.4i)T^{2} \)
43 \( 1 + (1.04 + 9.95i)T + (-42.0 + 8.94i)T^{2} \)
47 \( 1 + (4.16 + 3.02i)T + (14.5 + 44.6i)T^{2} \)
53 \( 1 + (6.83 - 7.59i)T + (-5.54 - 52.7i)T^{2} \)
59 \( 1 + (-9.18 + 4.08i)T + (39.4 - 43.8i)T^{2} \)
61 \( 1 + 3.58T + 61T^{2} \)
67 \( 1 + (-5.86 - 10.1i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (3.37 - 3.74i)T + (-7.42 - 70.6i)T^{2} \)
73 \( 1 + (0.469 - 0.0997i)T + (66.6 - 29.6i)T^{2} \)
79 \( 1 + (1.41 + 0.301i)T + (72.1 + 32.1i)T^{2} \)
83 \( 1 + (13.0 + 5.79i)T + (55.5 + 61.6i)T^{2} \)
89 \( 1 + (3.14 - 9.68i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (0.755 - 2.32i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.96511912239351227954412937225, −11.49020496793699163885294220088, −10.47680274791817432758306146013, −9.726062603978746783490763905943, −8.797593267306523033127942510858, −7.30499876875215175451920254279, −6.85038358267488483887699919165, −5.66801374666825783957561188418, −3.53915636415017717528503706540, −2.07186961657817909635797849217, 1.50850930842737722745456573496, 3.19229982523924610257675734386, 4.83711676568749471235692940153, 6.02658038933944388996574752812, 7.84319648602655804983830193783, 8.576781752558840650880483322299, 9.676820050600201323416707792992, 9.936446745930170247514977760954, 11.52627305921822939463242554142, 12.67598444462184457278435817253

Graph of the $Z$-function along the critical line