| L(s)  = 1 | − 2·2-s   + 3·3-s   + 4·4-s   + 15·5-s   − 6·6-s   + 17·7-s   − 8·8-s   + 9·9-s   − 30·10-s   + 24·11-s   + 12·12-s   + 2·13-s   − 34·14-s   + 45·15-s   + 16·16-s   − 48·17-s   − 18·18-s   − 115·19-s   + 60·20-s   + 51·21-s   − 48·22-s   + 30·23-s   − 24·24-s   + 100·25-s   − 4·26-s   + 27·27-s   + 68·28-s  + ⋯ | 
| L(s)  = 1 | − 0.707·2-s   + 0.577·3-s   + 1/2·4-s   + 1.34·5-s   − 0.408·6-s   + 0.917·7-s   − 0.353·8-s   + 1/3·9-s   − 0.948·10-s   + 0.657·11-s   + 0.288·12-s   + 0.0426·13-s   − 0.649·14-s   + 0.774·15-s   + 1/4·16-s   − 0.684·17-s   − 0.235·18-s   − 1.38·19-s   + 0.670·20-s   + 0.529·21-s   − 0.465·22-s   + 0.271·23-s   − 0.204·24-s   + 4/5·25-s   − 0.0301·26-s   + 0.192·27-s   + 0.458·28-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 186 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 186 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(2)\) | \(\approx\) | \(2.108418327\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(2.108418327\) | 
    
        
      | \(L(\frac{5}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 + p T \) | 
|  | 3 | \( 1 - p T \) | 
|  | 31 | \( 1 - p T \) | 
| good | 5 | \( 1 - 3 p T + p^{3} T^{2} \) | 
|  | 7 | \( 1 - 17 T + p^{3} T^{2} \) | 
|  | 11 | \( 1 - 24 T + p^{3} T^{2} \) | 
|  | 13 | \( 1 - 2 T + p^{3} T^{2} \) | 
|  | 17 | \( 1 + 48 T + p^{3} T^{2} \) | 
|  | 19 | \( 1 + 115 T + p^{3} T^{2} \) | 
|  | 23 | \( 1 - 30 T + p^{3} T^{2} \) | 
|  | 29 | \( 1 - 264 T + p^{3} T^{2} \) | 
|  | 37 | \( 1 + 160 T + p^{3} T^{2} \) | 
|  | 41 | \( 1 + 51 T + p^{3} T^{2} \) | 
|  | 43 | \( 1 - 128 T + p^{3} T^{2} \) | 
|  | 47 | \( 1 - 480 T + p^{3} T^{2} \) | 
|  | 53 | \( 1 - 132 T + p^{3} T^{2} \) | 
|  | 59 | \( 1 - 309 T + p^{3} T^{2} \) | 
|  | 61 | \( 1 + 280 T + p^{3} T^{2} \) | 
|  | 67 | \( 1 + 604 T + p^{3} T^{2} \) | 
|  | 71 | \( 1 + 159 T + p^{3} T^{2} \) | 
|  | 73 | \( 1 + 652 T + p^{3} T^{2} \) | 
|  | 79 | \( 1 + 838 T + p^{3} T^{2} \) | 
|  | 83 | \( 1 + 690 T + p^{3} T^{2} \) | 
|  | 89 | \( 1 + 6 p T + p^{3} T^{2} \) | 
|  | 97 | \( 1 - 329 T + p^{3} T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.06495447893313175955387626698, −10.82069091600531217290705708112, −10.09028656170583999344167716292, −8.962535729199343705841388199387, −8.464451885243023668591093502051, −7.01428179093715877723063709011, −6.01704739615297812954969766833, −4.49153125823335119317257629826, −2.48304245409309856227462379789, −1.46869518310948374825592367895, 
1.46869518310948374825592367895, 2.48304245409309856227462379789, 4.49153125823335119317257629826, 6.01704739615297812954969766833, 7.01428179093715877723063709011, 8.464451885243023668591093502051, 8.962535729199343705841388199387, 10.09028656170583999344167716292, 10.82069091600531217290705708112, 12.06495447893313175955387626698
