Properties

Label 2-186-1.1-c3-0-5
Degree $2$
Conductor $186$
Sign $1$
Analytic cond. $10.9743$
Root an. cond. $3.31275$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·3-s + 4·4-s + 15·5-s − 6·6-s + 17·7-s − 8·8-s + 9·9-s − 30·10-s + 24·11-s + 12·12-s + 2·13-s − 34·14-s + 45·15-s + 16·16-s − 48·17-s − 18·18-s − 115·19-s + 60·20-s + 51·21-s − 48·22-s + 30·23-s − 24·24-s + 100·25-s − 4·26-s + 27·27-s + 68·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s + 0.917·7-s − 0.353·8-s + 1/3·9-s − 0.948·10-s + 0.657·11-s + 0.288·12-s + 0.0426·13-s − 0.649·14-s + 0.774·15-s + 1/4·16-s − 0.684·17-s − 0.235·18-s − 1.38·19-s + 0.670·20-s + 0.529·21-s − 0.465·22-s + 0.271·23-s − 0.204·24-s + 4/5·25-s − 0.0301·26-s + 0.192·27-s + 0.458·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 186 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 186 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(186\)    =    \(2 \cdot 3 \cdot 31\)
Sign: $1$
Analytic conductor: \(10.9743\)
Root analytic conductor: \(3.31275\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 186,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.108418327\)
\(L(\frac12)\) \(\approx\) \(2.108418327\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
3 \( 1 - p T \)
31 \( 1 - p T \)
good5 \( 1 - 3 p T + p^{3} T^{2} \)
7 \( 1 - 17 T + p^{3} T^{2} \)
11 \( 1 - 24 T + p^{3} T^{2} \)
13 \( 1 - 2 T + p^{3} T^{2} \)
17 \( 1 + 48 T + p^{3} T^{2} \)
19 \( 1 + 115 T + p^{3} T^{2} \)
23 \( 1 - 30 T + p^{3} T^{2} \)
29 \( 1 - 264 T + p^{3} T^{2} \)
37 \( 1 + 160 T + p^{3} T^{2} \)
41 \( 1 + 51 T + p^{3} T^{2} \)
43 \( 1 - 128 T + p^{3} T^{2} \)
47 \( 1 - 480 T + p^{3} T^{2} \)
53 \( 1 - 132 T + p^{3} T^{2} \)
59 \( 1 - 309 T + p^{3} T^{2} \)
61 \( 1 + 280 T + p^{3} T^{2} \)
67 \( 1 + 604 T + p^{3} T^{2} \)
71 \( 1 + 159 T + p^{3} T^{2} \)
73 \( 1 + 652 T + p^{3} T^{2} \)
79 \( 1 + 838 T + p^{3} T^{2} \)
83 \( 1 + 690 T + p^{3} T^{2} \)
89 \( 1 + 6 p T + p^{3} T^{2} \)
97 \( 1 - 329 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.06495447893313175955387626698, −10.82069091600531217290705708112, −10.09028656170583999344167716292, −8.962535729199343705841388199387, −8.464451885243023668591093502051, −7.01428179093715877723063709011, −6.01704739615297812954969766833, −4.49153125823335119317257629826, −2.48304245409309856227462379789, −1.46869518310948374825592367895, 1.46869518310948374825592367895, 2.48304245409309856227462379789, 4.49153125823335119317257629826, 6.01704739615297812954969766833, 7.01428179093715877723063709011, 8.464451885243023668591093502051, 8.962535729199343705841388199387, 10.09028656170583999344167716292, 10.82069091600531217290705708112, 12.06495447893313175955387626698

Graph of the $Z$-function along the critical line