L(s) = 1 | + 2-s − 1.53·3-s + 4-s − 1.53·6-s + 2.87·7-s + 8-s − 0.630·9-s − 1.09·11-s − 1.53·12-s − 4.53·13-s + 2.87·14-s + 16-s − 2.80·17-s − 0.630·18-s − 5.04·19-s − 4.43·21-s − 1.09·22-s − 7.41·23-s − 1.53·24-s − 4.53·26-s + 5.58·27-s + 2.87·28-s + 6.68·29-s + 3.51·31-s + 32-s + 1.68·33-s − 2.80·34-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.888·3-s + 0.5·4-s − 0.628·6-s + 1.08·7-s + 0.353·8-s − 0.210·9-s − 0.329·11-s − 0.444·12-s − 1.25·13-s + 0.769·14-s + 0.250·16-s − 0.679·17-s − 0.148·18-s − 1.15·19-s − 0.967·21-s − 0.232·22-s − 1.54·23-s − 0.314·24-s − 0.890·26-s + 1.07·27-s + 0.544·28-s + 1.24·29-s + 0.630·31-s + 0.176·32-s + 0.292·33-s − 0.480·34-s + ⋯ |
Λ(s)=(=(1850s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1850s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1 |
| 37 | 1+T |
good | 3 | 1+1.53T+3T2 |
| 7 | 1−2.87T+7T2 |
| 11 | 1+1.09T+11T2 |
| 13 | 1+4.53T+13T2 |
| 17 | 1+2.80T+17T2 |
| 19 | 1+5.04T+19T2 |
| 23 | 1+7.41T+23T2 |
| 29 | 1−6.68T+29T2 |
| 31 | 1−3.51T+31T2 |
| 41 | 1+8.07T+41T2 |
| 43 | 1+10.2T+43T2 |
| 47 | 1+8.68T+47T2 |
| 53 | 1−10.0T+53T2 |
| 59 | 1−10.2T+59T2 |
| 61 | 1−6.29T+61T2 |
| 67 | 1+13.2T+67T2 |
| 71 | 1−6.29T+71T2 |
| 73 | 1+12.7T+73T2 |
| 79 | 1−2.58T+79T2 |
| 83 | 1+8.48T+83T2 |
| 89 | 1+6.51T+89T2 |
| 97 | 1+3.07T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.494031857496862585393605755609, −8.166922527811166607370359984698, −6.96556838448942531042278721785, −6.38647032776418567834371524018, −5.41035212151330347280175613963, −4.84772763250043229420889753281, −4.22090296842033137633880042530, −2.73270499268890823377421484147, −1.83267338175141695976612589082, 0,
1.83267338175141695976612589082, 2.73270499268890823377421484147, 4.22090296842033137633880042530, 4.84772763250043229420889753281, 5.41035212151330347280175613963, 6.38647032776418567834371524018, 6.96556838448942531042278721785, 8.166922527811166607370359984698, 8.494031857496862585393605755609