L(s) = 1 | − 2-s + 4-s + 2·7-s − 8-s − 3·9-s − 2·13-s − 2·14-s + 16-s + 6·17-s + 3·18-s − 6·19-s − 4·23-s + 2·26-s + 2·28-s − 4·31-s − 32-s − 6·34-s − 3·36-s + 37-s + 6·38-s − 10·41-s + 4·43-s + 4·46-s + 2·47-s − 3·49-s − 2·52-s − 2·53-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.755·7-s − 0.353·8-s − 9-s − 0.554·13-s − 0.534·14-s + 1/4·16-s + 1.45·17-s + 0.707·18-s − 1.37·19-s − 0.834·23-s + 0.392·26-s + 0.377·28-s − 0.718·31-s − 0.176·32-s − 1.02·34-s − 1/2·36-s + 0.164·37-s + 0.973·38-s − 1.56·41-s + 0.609·43-s + 0.589·46-s + 0.291·47-s − 3/7·49-s − 0.277·52-s − 0.274·53-s + ⋯ |
Λ(s)=(=(1850s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1850s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1 |
| 37 | 1−T |
good | 3 | 1+pT2 |
| 7 | 1−2T+pT2 |
| 11 | 1+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1+pT2 |
| 31 | 1+4T+pT2 |
| 41 | 1+10T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1−2T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1+pT2 |
| 67 | 1+8T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+8T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.776464432479204247972797831801, −8.062677850001302204457856503347, −7.61843478274367654964811575512, −6.48983703143827331517471330308, −5.71184317840727757217829967484, −4.89537956640686110087732549653, −3.67934155458315654719216021516, −2.59022325384696380905670929706, −1.59496787970180487849418213093, 0,
1.59496787970180487849418213093, 2.59022325384696380905670929706, 3.67934155458315654719216021516, 4.89537956640686110087732549653, 5.71184317840727757217829967484, 6.48983703143827331517471330308, 7.61843478274367654964811575512, 8.062677850001302204457856503347, 8.776464432479204247972797831801