Properties

Label 2-185-185.169-c1-0-1
Degree $2$
Conductor $185$
Sign $0.938 - 0.345i$
Analytic cond. $1.47723$
Root an. cond. $1.21541$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.896 − 0.326i)2-s + (0.0971 + 0.266i)3-s + (−0.834 − 0.700i)4-s + (0.684 + 2.12i)5-s − 0.270i·6-s + (−0.0783 − 0.0138i)7-s + (1.47 + 2.55i)8-s + (2.23 − 1.87i)9-s + (0.0808 − 2.13i)10-s + (2.24 + 3.87i)11-s + (0.105 − 0.290i)12-s + (0.642 + 0.539i)13-s + (0.0657 + 0.0379i)14-s + (−0.501 + 0.389i)15-s + (−0.109 − 0.622i)16-s + (3.63 − 3.04i)17-s + ⋯
L(s)  = 1  + (−0.633 − 0.230i)2-s + (0.0560 + 0.154i)3-s + (−0.417 − 0.350i)4-s + (0.306 + 0.951i)5-s − 0.110i·6-s + (−0.0296 − 0.00522i)7-s + (0.521 + 0.902i)8-s + (0.745 − 0.625i)9-s + (0.0255 − 0.674i)10-s + (0.675 + 1.16i)11-s + (0.0305 − 0.0839i)12-s + (0.178 + 0.149i)13-s + (0.0175 + 0.0101i)14-s + (−0.129 + 0.100i)15-s + (−0.0274 − 0.155i)16-s + (0.881 − 0.739i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.938 - 0.345i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.938 - 0.345i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(185\)    =    \(5 \cdot 37\)
Sign: $0.938 - 0.345i$
Analytic conductor: \(1.47723\)
Root analytic conductor: \(1.21541\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{185} (169, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 185,\ (\ :1/2),\ 0.938 - 0.345i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.864310 + 0.153829i\)
\(L(\frac12)\) \(\approx\) \(0.864310 + 0.153829i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.684 - 2.12i)T \)
37 \( 1 + (4.06 + 4.52i)T \)
good2 \( 1 + (0.896 + 0.326i)T + (1.53 + 1.28i)T^{2} \)
3 \( 1 + (-0.0971 - 0.266i)T + (-2.29 + 1.92i)T^{2} \)
7 \( 1 + (0.0783 + 0.0138i)T + (6.57 + 2.39i)T^{2} \)
11 \( 1 + (-2.24 - 3.87i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (-0.642 - 0.539i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (-3.63 + 3.04i)T + (2.95 - 16.7i)T^{2} \)
19 \( 1 + (-0.698 - 1.92i)T + (-14.5 + 12.2i)T^{2} \)
23 \( 1 + (-0.00227 + 0.00393i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (0.499 - 0.288i)T + (14.5 - 25.1i)T^{2} \)
31 \( 1 - 5.06iT - 31T^{2} \)
41 \( 1 + (4.55 + 3.81i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 - 1.01T + 43T^{2} \)
47 \( 1 + (6.88 + 3.97i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (0.788 - 0.138i)T + (49.8 - 18.1i)T^{2} \)
59 \( 1 + (-7.84 + 1.38i)T + (55.4 - 20.1i)T^{2} \)
61 \( 1 + (2.86 - 3.40i)T + (-10.5 - 60.0i)T^{2} \)
67 \( 1 + (-3.19 - 0.563i)T + (62.9 + 22.9i)T^{2} \)
71 \( 1 + (-5.63 + 2.05i)T + (54.3 - 45.6i)T^{2} \)
73 \( 1 + 9.38iT - 73T^{2} \)
79 \( 1 + (6.85 + 1.20i)T + (74.2 + 27.0i)T^{2} \)
83 \( 1 + (-9.01 - 10.7i)T + (-14.4 + 81.7i)T^{2} \)
89 \( 1 + (-10.5 + 1.86i)T + (83.6 - 30.4i)T^{2} \)
97 \( 1 + (-3.54 + 6.13i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.51998299734714310434861038394, −11.51759051377581421914041911597, −10.25331735052472768485045230266, −9.865767149538444811565317026539, −9.009101045710630438309227596513, −7.50420641388807355243411049244, −6.59670881758498919402213041740, −5.10401136674995304126821520790, −3.66113127761655466214619811810, −1.70737589497730084927000453693, 1.21787424267635319420405298217, 3.70541158132441799064668971090, 4.97315506079772433264831643777, 6.37165391763855877496941117265, 7.83271580880873353072080962851, 8.433028388088739567235960703134, 9.407608664177508304404182510135, 10.25092085971191042841170732747, 11.63208977826889937563779508040, 12.82262744222820374468345593709

Graph of the $Z$-function along the critical line