| L(s) = 1 | + (−0.468 − 1.66i)3-s + 2.13·5-s + (1.56 + 2.13i)7-s + (−2.56 + 1.56i)9-s + i·11-s + 2.13i·13-s + (−0.999 − 3.56i)15-s − 2.39·17-s + 4.53i·19-s + (2.83 − 3.60i)21-s + 3.12i·23-s − 0.438·25-s + (3.80 + 3.54i)27-s + 0.561i·29-s + 10.4i·31-s + ⋯ |
| L(s) = 1 | + (−0.270 − 0.962i)3-s + 0.955·5-s + (0.590 + 0.807i)7-s + (−0.853 + 0.520i)9-s + 0.301i·11-s + 0.592i·13-s + (−0.258 − 0.919i)15-s − 0.581·17-s + 1.04i·19-s + (0.617 − 0.786i)21-s + 0.651i·23-s − 0.0876·25-s + (0.731 + 0.681i)27-s + 0.104i·29-s + 1.87i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.617 - 0.786i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.617 - 0.786i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.586761836\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.586761836\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.468 + 1.66i)T \) |
| 7 | \( 1 + (-1.56 - 2.13i)T \) |
| 11 | \( 1 - iT \) |
| good | 5 | \( 1 - 2.13T + 5T^{2} \) |
| 13 | \( 1 - 2.13iT - 13T^{2} \) |
| 17 | \( 1 + 2.39T + 17T^{2} \) |
| 19 | \( 1 - 4.53iT - 19T^{2} \) |
| 23 | \( 1 - 3.12iT - 23T^{2} \) |
| 29 | \( 1 - 0.561iT - 29T^{2} \) |
| 31 | \( 1 - 10.4iT - 31T^{2} \) |
| 37 | \( 1 - 8.56T + 37T^{2} \) |
| 41 | \( 1 + 4.79T + 41T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 + 7.86T + 47T^{2} \) |
| 53 | \( 1 + 8.24iT - 53T^{2} \) |
| 59 | \( 1 + 13.0T + 59T^{2} \) |
| 61 | \( 1 + 3.33iT - 61T^{2} \) |
| 67 | \( 1 - 5.43T + 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 - 7.34iT - 73T^{2} \) |
| 79 | \( 1 - 8.24T + 79T^{2} \) |
| 83 | \( 1 - 4.68T + 83T^{2} \) |
| 89 | \( 1 - 3.74T + 89T^{2} \) |
| 97 | \( 1 + 1.87iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.296770985139752003973367855453, −8.473450885546284403584462987885, −7.86482116601806064114301373607, −6.78695301353951667617144305996, −6.25082860305417839002347750621, −5.42673258556957580105454428336, −4.78337518729025434698410131743, −3.19945714787940918530212117336, −1.95971142099124675885075142550, −1.62378799277102046043939950930,
0.58036619419417934050846811608, 2.17096048074125538173144800783, 3.25765407117076116122555968979, 4.39644886018899888777544048633, 4.90418822500114388172697787349, 5.91654749783526744726810410463, 6.47750907428579489940049694316, 7.66993601502573649217172647017, 8.461370435637752607252145154391, 9.362465784865653484243551990016