Properties

Label 2-1848-21.20-c1-0-12
Degree $2$
Conductor $1848$
Sign $-0.187 - 0.982i$
Analytic cond. $14.7563$
Root an. cond. $3.84140$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.72 + 0.199i)3-s − 3.94·5-s + (−0.792 − 2.52i)7-s + (2.92 + 0.686i)9-s + i·11-s + 0.0683i·13-s + (−6.78 − 0.786i)15-s − 3.76·17-s − 1.51i·19-s + (−0.860 − 4.50i)21-s + 7.42i·23-s + 10.5·25-s + (4.88 + 1.76i)27-s + 6.29i·29-s + 7.71i·31-s + ⋯
L(s)  = 1  + (0.993 + 0.115i)3-s − 1.76·5-s + (−0.299 − 0.954i)7-s + (0.973 + 0.228i)9-s + 0.301i·11-s + 0.0189i·13-s + (−1.75 − 0.203i)15-s − 0.913·17-s − 0.346i·19-s + (−0.187 − 0.982i)21-s + 1.54i·23-s + 2.10·25-s + (0.940 + 0.339i)27-s + 1.16i·29-s + 1.38i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.187 - 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.187 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1848\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 11\)
Sign: $-0.187 - 0.982i$
Analytic conductor: \(14.7563\)
Root analytic conductor: \(3.84140\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1848} (881, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1848,\ (\ :1/2),\ -0.187 - 0.982i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.001878549\)
\(L(\frac12)\) \(\approx\) \(1.001878549\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.72 - 0.199i)T \)
7 \( 1 + (0.792 + 2.52i)T \)
11 \( 1 - iT \)
good5 \( 1 + 3.94T + 5T^{2} \)
13 \( 1 - 0.0683iT - 13T^{2} \)
17 \( 1 + 3.76T + 17T^{2} \)
19 \( 1 + 1.51iT - 19T^{2} \)
23 \( 1 - 7.42iT - 23T^{2} \)
29 \( 1 - 6.29iT - 29T^{2} \)
31 \( 1 - 7.71iT - 31T^{2} \)
37 \( 1 + 11.8T + 37T^{2} \)
41 \( 1 - 3.60T + 41T^{2} \)
43 \( 1 - 11.6T + 43T^{2} \)
47 \( 1 - 3.21T + 47T^{2} \)
53 \( 1 - 3.75iT - 53T^{2} \)
59 \( 1 + 2.17T + 59T^{2} \)
61 \( 1 + 1.89iT - 61T^{2} \)
67 \( 1 + 2.06T + 67T^{2} \)
71 \( 1 - 2.38iT - 71T^{2} \)
73 \( 1 - 9.38iT - 73T^{2} \)
79 \( 1 + 10.1T + 79T^{2} \)
83 \( 1 + 7.60T + 83T^{2} \)
89 \( 1 + 1.20T + 89T^{2} \)
97 \( 1 + 11.9iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.146793356793868327141952075690, −8.739894904766870738272865345899, −7.76507720482424891142387880879, −7.24172032746253146578411877284, −6.85474905150717028598207350250, −5.06256376421298585731484640417, −4.20574577693474153332854674041, −3.68499747983980404525799105334, −2.92323893211856019712224433598, −1.30853252313058567708838251869, 0.34352258004875938087068996536, 2.24361700109908763077442269221, 3.03933607990387005328189470775, 4.02161357389337163769044327130, 4.50626408854743456521787757873, 5.94205796295607561477206312620, 6.88646625507231318457421782029, 7.62385987739919628487443668507, 8.392159929250855795796643933398, 8.705435244042339621380039170765

Graph of the $Z$-function along the critical line