| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.499 + 0.866i)4-s + (0.866 + 0.5i)5-s + 0.999·6-s + (−0.5 − 0.866i)7-s + 0.999i·8-s + (0.499 − 0.866i)9-s + (0.499 + 0.866i)10-s + (−0.866 − 0.5i)11-s + (0.866 + 0.499i)12-s − 0.999i·14-s + 0.999·15-s + (−0.5 + 0.866i)16-s + (0.866 − 0.499i)18-s + ⋯ |
| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.499 + 0.866i)4-s + (0.866 + 0.5i)5-s + 0.999·6-s + (−0.5 − 0.866i)7-s + 0.999i·8-s + (0.499 − 0.866i)9-s + (0.499 + 0.866i)10-s + (−0.866 − 0.5i)11-s + (0.866 + 0.499i)12-s − 0.999i·14-s + 0.999·15-s + (−0.5 + 0.866i)16-s + (0.866 − 0.499i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 - 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 - 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.580452269\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.580452269\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.866 + 0.5i)T \) |
| good | 5 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - iT - T^{2} \) |
| 31 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - 1.73T + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + 1.73iT - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.291181901654063081318183227474, −8.583308995281298606228149787215, −7.53002263750398275768570783735, −7.19951403608889660223405887519, −6.31704726999626991858715248451, −5.67873168332637091217237140718, −4.50868203174925932071374921751, −3.40269854316847308257156299863, −2.91078674448830522328120577419, −1.79855032065337645803465258735,
1.92740938207215443983903201757, 2.42547144954059684996973596836, 3.42796406493232598834209839851, 4.40839346741739135600643622183, 5.36000362075818885679509300705, 5.71734149921308956371119684713, 6.89511247855689996176848927760, 7.897866790270265114871524212137, 8.902440947701213923079245874526, 9.630492210184055345181788837282