| L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + 0.999·6-s + (−0.5 − 0.866i)7-s − 0.999i·8-s + (0.499 − 0.866i)9-s + (0.499 + 0.866i)10-s + (0.866 + 0.5i)11-s + (−0.866 − 0.499i)12-s + 0.999i·14-s + 0.999·15-s + (−0.5 + 0.866i)16-s + (−0.866 + 0.499i)18-s + ⋯ |
| L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + 0.999·6-s + (−0.5 − 0.866i)7-s − 0.999i·8-s + (0.499 − 0.866i)9-s + (0.499 + 0.866i)10-s + (0.866 + 0.5i)11-s + (−0.866 − 0.499i)12-s + 0.999i·14-s + 0.999·15-s + (−0.5 + 0.866i)16-s + (−0.866 + 0.499i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.922 + 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.922 + 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2134327401\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2134327401\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.866 - 0.5i)T \) |
| good | 5 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + iT - T^{2} \) |
| 31 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + 1.73T + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + 1.73iT - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.280386506405227570838658493405, −8.486615967376488092445331597255, −7.46400349216315738246037768643, −6.94332052049227287562971618158, −6.08631117547424184394253699853, −4.67955904025606569903355095420, −4.01228487807515736745203268338, −3.38699441352033818417387591852, −1.53633046803468696684619601117, −0.25484365420239237339543136201,
1.44025138369517005013955168426, 2.76226419758507908969048800659, 4.04662844674382286034275585461, 5.42044717464037627872122352158, 5.92153321747872097565987424365, 6.81114998332857498268084467388, 7.25347504403494627566007792411, 8.135887683812036000474829854154, 8.927097628422380463471715586079, 9.638087923866284070996802075900