| L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.866 + 1.5i)5-s − 0.999·6-s + (0.866 − 0.5i)7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (0.866 − 1.5i)10-s + (0.5 − 0.866i)11-s + (0.499 + 0.866i)12-s + (−0.866 − 0.499i)14-s + 1.73·15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + (−0.499 + 0.866i)18-s + ⋯ |
| L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.866 + 1.5i)5-s − 0.999·6-s + (0.866 − 0.5i)7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (0.866 − 1.5i)10-s + (0.5 − 0.866i)11-s + (0.499 + 0.866i)12-s + (−0.866 − 0.499i)14-s + 1.73·15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s + (−0.499 + 0.866i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.286640010\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.286640010\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| good | 5 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T + T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.349972656055222346811887419307, −8.525115930788390202759903333843, −7.83561056494335896442814478261, −7.01610556720469995436537437179, −6.45982951435982865675863135463, −5.32283808579801896318915417201, −3.71019649105072726450865136061, −3.21897578913793341031607602839, −2.09881579263313082159341949513, −1.44680004969862980030673143438,
1.40774965471252286284790932503, 2.41094726674489170760290760670, 4.47352504971145478490373938595, 4.70469376399237820858168167714, 5.34500653823643821908356193681, 6.29160735062614467400458895453, 7.42079156349673222564371880835, 8.387981945105118661022295282628, 8.815263872239862809340897909759, 9.298471094629011961961419218985