Properties

Label 2-1848-1.1-c1-0-17
Degree $2$
Conductor $1848$
Sign $-1$
Analytic cond. $14.7563$
Root an. cond. $3.84140$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4.37·5-s + 7-s + 9-s − 11-s + 0.372·13-s + 4.37·15-s + 6.74·17-s + 1.62·19-s − 21-s + 4.74·23-s + 14.1·25-s − 27-s − 4.37·29-s − 8·31-s + 33-s − 4.37·35-s + 0.372·37-s − 0.372·39-s − 10.7·41-s − 0.744·43-s − 4.37·45-s − 2.37·47-s + 49-s − 6.74·51-s − 10·53-s + 4.37·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.95·5-s + 0.377·7-s + 0.333·9-s − 0.301·11-s + 0.103·13-s + 1.12·15-s + 1.63·17-s + 0.373·19-s − 0.218·21-s + 0.989·23-s + 2.82·25-s − 0.192·27-s − 0.811·29-s − 1.43·31-s + 0.174·33-s − 0.739·35-s + 0.0612·37-s − 0.0596·39-s − 1.67·41-s − 0.113·43-s − 0.651·45-s − 0.346·47-s + 0.142·49-s − 0.944·51-s − 1.37·53-s + 0.589·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1848\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(14.7563\)
Root analytic conductor: \(3.84140\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1848,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 + T \)
good5 \( 1 + 4.37T + 5T^{2} \)
13 \( 1 - 0.372T + 13T^{2} \)
17 \( 1 - 6.74T + 17T^{2} \)
19 \( 1 - 1.62T + 19T^{2} \)
23 \( 1 - 4.74T + 23T^{2} \)
29 \( 1 + 4.37T + 29T^{2} \)
31 \( 1 + 8T + 31T^{2} \)
37 \( 1 - 0.372T + 37T^{2} \)
41 \( 1 + 10.7T + 41T^{2} \)
43 \( 1 + 0.744T + 43T^{2} \)
47 \( 1 + 2.37T + 47T^{2} \)
53 \( 1 + 10T + 53T^{2} \)
59 \( 1 + 6.37T + 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 - 11.1T + 67T^{2} \)
71 \( 1 + 9.48T + 71T^{2} \)
73 \( 1 - 9.11T + 73T^{2} \)
79 \( 1 - 16T + 79T^{2} \)
83 \( 1 - 5.48T + 83T^{2} \)
89 \( 1 + 15.4T + 89T^{2} \)
97 \( 1 + 7.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.686256437389933871526925666902, −7.76316581981646369724033447260, −7.56178852228549957839936062626, −6.63833068251119298999507673294, −5.34637780706155344972664767845, −4.85727617426182684057928997651, −3.72884068068349385326566744734, −3.21635951752728731960723666597, −1.29732679535621725178380720317, 0, 1.29732679535621725178380720317, 3.21635951752728731960723666597, 3.72884068068349385326566744734, 4.85727617426182684057928997651, 5.34637780706155344972664767845, 6.63833068251119298999507673294, 7.56178852228549957839936062626, 7.76316581981646369724033447260, 8.686256437389933871526925666902

Graph of the $Z$-function along the critical line