Properties

Label 2-1848-1.1-c1-0-12
Degree $2$
Conductor $1848$
Sign $1$
Analytic cond. $14.7563$
Root an. cond. $3.84140$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3.56·5-s + 7-s + 9-s + 11-s + 0.438·13-s − 3.56·15-s + 2·17-s + 1.56·19-s − 21-s + 7.68·25-s − 27-s + 0.438·29-s + 3.12·31-s − 33-s + 3.56·35-s + 9.80·37-s − 0.438·39-s − 1.12·41-s − 10.2·43-s + 3.56·45-s − 8.68·47-s + 49-s − 2·51-s + 2.87·53-s + 3.56·55-s − 1.56·57-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.59·5-s + 0.377·7-s + 0.333·9-s + 0.301·11-s + 0.121·13-s − 0.919·15-s + 0.485·17-s + 0.358·19-s − 0.218·21-s + 1.53·25-s − 0.192·27-s + 0.0814·29-s + 0.560·31-s − 0.174·33-s + 0.602·35-s + 1.61·37-s − 0.0702·39-s − 0.175·41-s − 1.56·43-s + 0.530·45-s − 1.26·47-s + 0.142·49-s − 0.280·51-s + 0.395·53-s + 0.480·55-s − 0.206·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1848\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(14.7563\)
Root analytic conductor: \(3.84140\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1848,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.184210221\)
\(L(\frac12)\) \(\approx\) \(2.184210221\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 - T \)
good5 \( 1 - 3.56T + 5T^{2} \)
13 \( 1 - 0.438T + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 1.56T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 0.438T + 29T^{2} \)
31 \( 1 - 3.12T + 31T^{2} \)
37 \( 1 - 9.80T + 37T^{2} \)
41 \( 1 + 1.12T + 41T^{2} \)
43 \( 1 + 10.2T + 43T^{2} \)
47 \( 1 + 8.68T + 47T^{2} \)
53 \( 1 - 2.87T + 53T^{2} \)
59 \( 1 + 4.68T + 59T^{2} \)
61 \( 1 + 8.24T + 61T^{2} \)
67 \( 1 + 1.56T + 67T^{2} \)
71 \( 1 - 6.24T + 71T^{2} \)
73 \( 1 - 7.56T + 73T^{2} \)
79 \( 1 + 6.24T + 79T^{2} \)
83 \( 1 - 7.12T + 83T^{2} \)
89 \( 1 + 4.24T + 89T^{2} \)
97 \( 1 - 13.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.518589989847936184268152410446, −8.549375854566871081684669441821, −7.62741994722189564411576355492, −6.55597401311922205622931187793, −6.08903391970779655645997043621, −5.27716616218414770588336266537, −4.60091343536064424272029901453, −3.22135372980770518582582174202, −2.04204062564621713530009498999, −1.13595700592632520635733462762, 1.13595700592632520635733462762, 2.04204062564621713530009498999, 3.22135372980770518582582174202, 4.60091343536064424272029901453, 5.27716616218414770588336266537, 6.08903391970779655645997043621, 6.55597401311922205622931187793, 7.62741994722189564411576355492, 8.549375854566871081684669441821, 9.518589989847936184268152410446

Graph of the $Z$-function along the critical line